Suppr超能文献

Redox regulation of neuronal migration in a Down Syndrome model.

作者信息

Behar Toby N, Colton Carol A

机构信息

Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

出版信息

Free Radic Biol Med. 2003 Sep 15;35(6):566-75. doi: 10.1016/s0891-5849(03)00329-0.

Abstract

Down Syndrome (DS), one of the major genetic causes of mental retardation, is characterized by disrupted corticogenesis produced, in part, by an abnormal layering of neurons in cortical laminas II and III. Because defects in the normal migration of neurons during corticogenesis can result in delayed cortical radial expansion and abnormalities in cortical layering, we have examined neuronal migration in murine trisomy 16 (Ts16), a mouse model for DS. Using an in vitro assay for chemotaxis, our data demonstrate that the number of acutely dissociated Ts16 cortical neurons migrating in response to glutamate or N-methyl-D-aspartate (NMDA), known chemotactic factors, was decreased compared to normal littermates, suggesting a defect in NMDA receptor- (NMDAR-) mediated events. Ts16 neurons did not lack NMDAR since expression of mRNA and protein for NMDAR subunits was observed in Ts16 cells. However, the number of cells that generated an observable current in response to NMDA was decreased compared to normal littermates. Similar to DS, Ts16 CNS demonstrated an inherent oxidative stress likely caused by the triplication of genes such as SOD1. To determine if the abnormal redox state was a factor in the failure of NMDAR-mediated migration in Ts16, we treated Ts16 neurons with either n-acetyl cysteine (NAC) or dithiothrietol (DTT), known antioxidants. The reduction in NMDAR-mediated migration observed in Ts16 neurons was returned to normal littermate values by NAC or DTT. Our data indicate that oxidative stress may play a key role in the abnormal glutamate-mediated responses during cortical development in the Ts16 mouse and may have an impact on neuronal migration at critical stages.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验