Suppr超能文献

基于信念网络和多层感知器的贝叶斯方法在具有拒识功能的卵巢肿瘤分类中的应用

Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection.

作者信息

Antal Peter, Fannes Geert, Timmerman Dirk, Moreau Yves, De Moor Bart

机构信息

Electrical Engineering Department ESAT/SCD, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Leuven, Belgium.

出版信息

Artif Intell Med. 2003 Sep-Oct;29(1-2):39-60. doi: 10.1016/s0933-3657(03)00053-8.

Abstract

Incorporating prior knowledge into black-box classifiers is still much of an open problem. We propose a hybrid Bayesian methodology that consists in encoding prior knowledge in the form of a (Bayesian) belief network and then using this knowledge to estimate an informative prior for a black-box model (e.g. a multilayer perceptron). Two technical approaches are proposed for the transformation of the belief network into an informative prior. The first one consists in generating samples according to the most probable parameterization of the Bayesian belief network and using them as virtual data together with the real data in the Bayesian learning of a multilayer perceptron. The second approach consists in transforming probability distributions over belief network parameters into distributions over multilayer perceptron parameters. The essential attribute of the hybrid methodology is that it combines prior knowledge and statistical data efficiently when prior knowledge is available and the sample is of small or medium size. Additionally, we describe how the Bayesian approach can provide uncertainty information about the predictions (e.g. for classification with rejection). We demonstrate these techniques on the medical task of predicting the malignancy of ovarian masses and summarize the practical advantages of the Bayesian approach. We compare the learning curves for the hybrid methodology with those of several belief networks and multilayer perceptrons. Furthermore, we report the performance of Bayesian belief networks when they are allowed to exclude hard cases based on various measures of prediction uncertainty.

摘要

将先验知识融入黑箱分类器仍然是一个很大的开放性问题。我们提出了一种混合贝叶斯方法,该方法包括以(贝叶斯)信念网络的形式对先验知识进行编码,然后使用这些知识为黑箱模型(例如多层感知器)估计一个信息丰富的先验。针对将信念网络转换为信息丰富的先验,提出了两种技术方法。第一种方法是根据贝叶斯信念网络最可能的参数化生成样本,并在多层感知器的贝叶斯学习中将它们与真实数据一起用作虚拟数据。第二种方法是将信念网络参数上的概率分布转换为多层感知器参数上的分布。混合方法的本质属性是,当先验知识可用且样本规模为中小规模时,它能有效地结合先验知识和统计数据。此外,我们描述了贝叶斯方法如何能够提供关于预测的不确定性信息(例如用于带拒绝的分类)。我们在预测卵巢肿块恶性程度的医学任务上展示了这些技术,并总结了贝叶斯方法的实际优势。我们将混合方法的学习曲线与几个信念网络和多层感知器的学习曲线进行了比较。此外,我们报告了贝叶斯信念网络在基于各种预测不确定性度量允许排除困难病例时的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验