Oldenburg Olaf, Qin Qining, Krieg Thomas, Yang Xi-Ming, Philipp Sebastian, Critz Stuart D, Cohen Michael V, Downey James M
Dept. of Physiology, MSB 3074, Univ. of South Alabama, College of Medicine, Mobile, AL 36688, USA.
Am J Physiol Heart Circ Physiol. 2004 Jan;286(1):H468-76. doi: 10.1152/ajpheart.00360.2003. Epub 2003 Sep 4.
Bradykinin (BK) mimics ischemic preconditioning by generating reactive oxygen species (ROS). To identify intermediate steps that lead to ROS generation, rabbit cardiomyocytes were incubated in reduced MitoTracker Red stain, which becomes fluorescent after exposure to ROS. Fluorescence intensity in treated cells was expressed as a percentage of that in paired, untreated cells. BK (500 nM) caused a 51 +/- 16% increase in ROS generation (P < 0.001). Coincubation with either the BK B2-receptor blocker HOE-140 (5 microM) or the free radical scavenger N-(2-mercaptopropionyl)glycine (1 mM) prevented this increase, which confirms that the response was receptor mediated and ROS were actually being measured. Closing mitochondrial ATP-sensitive K+ (mitoKATP) channels with 5-hydroxydecanoate (5-HD, 1 mM) prevented increased ROS generation. BK-induced ROS generation was blocked by Nomega-nitro-m-arginine methyl ester (m-NAME, 200 microM), which implicates nitric oxide as an intermediate. Blockade of guanylyl cyclase with 1-H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ, 10 microM) aborted BK-induced ROS generation but not that from diazoxide, a direct opener of mitoKATP channels. The protein kinase G (PKG) blocker 8-bromoguanosine-3',5'-cyclic monophosphorothioate (25 microM) eliminated the effects of BK. Conversely, direct activation of PKG with 8-(4-chlorophenylthio)-guanosine-3',5'-cyclic monophosphate (100 microM) increased ROS generation (39 +/- 15%; P < 0.004) similar to BK. This increase was blocked by 5-HD. Finally, the nitric oxide donor S-nitroso-N-acetylpenicillamine (1 microM) increased ROS by 34 +/- 6%. This increase was also blocked by 5-HD. In intact rabbit hearts, BK (400 nM) decreased infarction from 30.5 +/- 3.0 of the risk zone in control hearts to 11.9 +/- 1.4% (P < 0.01). This protection was aborted by either 200 microM m-NAME or 2 microM ODQ (35.4 +/- 5.7 and 30.4 +/- 3.0% infarction, respectively; P = not significant vs. control). Hence, BK preconditions through receptor-mediated production of nitric oxide, which activates guanylyl cyclase. The resulting cGMP activates PKG, which opens mitoKATP. Subsequent release of ROS triggers cardioprotection.
缓激肽(BK)通过产生活性氧(ROS)模拟缺血预处理。为了确定导致ROS产生的中间步骤,将兔心肌细胞置于还原型线粒体追踪红染液中孵育,该染液在暴露于ROS后会发出荧光。处理细胞中的荧光强度以配对未处理细胞中的荧光强度的百分比表示。BK(500 nM)使ROS产生增加51±16%(P<0.001)。与BK B2受体阻滞剂HOE-140(5 microM)或自由基清除剂N-(2-巯基丙酰基)甘氨酸(1 mM)共同孵育可阻止这种增加,这证实该反应是受体介导的,且实际测量到了ROS。用5-羟基癸酸(5-HD,1 mM)关闭线粒体ATP敏感性钾(mitoKATP)通道可阻止ROS产生增加。BK诱导的ROS产生被Nω-硝基-m-精氨酸甲酯(m-NAME,200 microM)阻断,这表明一氧化氮是中间产物。用1-H-[1,2,4]恶二唑[4,3-a]喹喔啉-1-酮(ODQ,10 microM)阻断鸟苷酸环化酶可中止BK诱导的ROS产生,但不能中止二氮嗪(一种mitoKATP通道的直接开放剂)诱导的ROS产生。蛋白激酶G(PKG)阻滞剂8-溴鸟苷-3',5'-环磷酸硫代酯(25 microM)消除了BK的作用。相反,用8-(4-氯苯硫基)-鸟苷-3',5'-环磷酸(100 microM)直接激活PKG可使ROS产生增加(39±15%;P<0.004),与BK相似。这种增加被5-HD阻断。最后,一氧化氮供体S-亚硝基-N-乙酰青霉胺(1 microM)使ROS增加34±6%。这种增加也被5-HD阻断。在完整的兔心脏中,BK(400 nM)使梗死面积从对照心脏危险区域的30.5±3.0%降至11.9±1.4%(P<0.01)。这种保护作用被200 microM m-NAME或2 microM ODQ中止(梗死面积分别为35.4±5.7%和30.4±3.0%;与对照相比P无显著性差异)。因此,BK通过受体介导产生一氧化氮来进行预处理,一氧化氮激活鸟苷酸环化酶。产生的环鸟苷酸(cGMP)激活PKG,PKG打开mitoKATP。随后ROS的释放触发心脏保护作用。