Suppr超能文献

去铁胺和3,4-二羟基苯甲酸乙酯通过激活一氧化氮合酶和产生线粒体活性氧来保护心肌。

Desferoxamine and ethyl-3,4-dihydroxybenzoate protect myocardium by activating NOS and generating mitochondrial ROS.

作者信息

Philipp Sebastian, Cui Lin, Ludolph Barbara, Kelm Malte, Schulz Rainer, Cohen Michael V, Downey James M

机构信息

Dept. of Physiology, Univ. of South Alabama College of Medicine, Mobile, AL 36688, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2006 Jan;290(1):H450-7. doi: 10.1152/ajpheart.00472.2005. Epub 2005 Sep 9.

Abstract

Protection from a prolyl hydroxylase domain-containing enzyme (PHD) inhibitor, desferoxamine (DFO), was recently reported to be dependent on production of reactive oxygen species (ROS). Ischemic preconditioning triggers the protected state by stimulating nitric oxide (NO) production to open mitochondrial ATP-sensitive K+ (mitoK(ATP)) channels, generating ROS required for protection. We tested whether DFO and a second PHD inhibitor, ethyl-3,4-dihydroxybenzoate (EDHB), might have similar mechanisms. EDHB and DFO increased ROS generation by 50-75% (P < 0.001) in isolated rabbit cardiomyocytes. This increase after EDHB exposure was blocked by N(omega)-nitro-L-arginine methyl ester (L-NAME), an NO synthase (NOS) inhibitor; ODQ, a guanylyl cyclase antagonist; and Rp-8-bromoguanosine-3',5'-cyclic monophosphorothioate Rp isomer, a PKG blocker, thus implicating the NO pathway in EDHB's signaling. Glibenclamide, a nonselective K(ATP) channel blocker, or 5-hydroxydecanoate, a selective mitoK(ATP) channel antagonist, also prevented EDHB's ROS production, as did blockade of mitochondrial electron transport with myxothiazol. NOS is activated by Akt. However, neither wortmannin, an inhibitor of phosphatidylinositol-3-kinase, nor Akt inhibitor blocked EDHB-induced ROS generation, indicating that EDHB initiates signaling downstream of Akt. DFO also increased ROS production, and this effect was blocked by ODQ, 5-hydroxydecanoate, and N-(2-mercaptopropionyl)glycine, an ROS scavenger. DFO increased cardiomyocyte production of nitrite, a metabolite of NO, and this effect was blocked by an inhibitor of NOS. DFO also spared ischemic myocardium in intact hearts. This infarct-sparing effect was blocked by ODQ, L-NAME, and N-(2-mercaptopropionyl)glycine. Hence, DFO and EDHB stimulate NO-dependent activation of PKG to open mitoK(ATP) channels and produce ROS, which act as second messengers to trigger entrance into the preconditioned state.

摘要

最近有报道称,脯氨酰羟化酶结构域包含酶(PHD)抑制剂去铁胺(DFO)发挥保护作用依赖于活性氧(ROS)的产生。缺血预处理通过刺激一氧化氮(NO)生成来打开线粒体ATP敏感性钾离子(mitoK(ATP))通道,从而触发保护状态,产生保护所需的ROS。我们测试了DFO和另一种PHD抑制剂3,4-二羟基苯甲酸乙酯(EDHB)是否可能具有类似机制。在离体兔心肌细胞中,EDHB和DFO使ROS生成增加了50 - 75%(P < 0.001)。EDHB作用后ROS的这种增加被NO合酶(NOS)抑制剂N(ω)-硝基-L-精氨酸甲酯(L-NAME)、鸟苷酸环化酶拮抗剂ODQ以及PKG阻滞剂Rp-8-溴鸟苷-3',5'-环磷硫酰胺Rp异构体所阻断,这表明EDHB的信号传导涉及NO途径。格列本脲(一种非选择性K(ATP)通道阻滞剂)或5-羟基癸酸(一种选择性mitoK(ATP)通道拮抗剂),以及用黏噻唑阻断线粒体电子传递,也都能阻止EDHB诱导的ROS产生。NOS可被Akt激活。然而,磷脂酰肌醇-3-激酶抑制剂渥曼青霉素和Akt抑制剂均不能阻断EDHB诱导的ROS生成,这表明EDHB在Akt下游启动信号传导。DFO也增加了ROS的产生,且这种效应被ODQ、5-羟基癸酸和ROS清除剂N-(2-巯基丙酰基)甘氨酸所阻断。DFO增加了心肌细胞中亚硝酸盐(NO的一种代谢产物)的生成,且这种效应被NOS抑制剂所阻断。DFO还能保护完整心脏中的缺血心肌。这种梗死保护效应被ODQ、L-NAME和N-(2-巯基丙酰基)甘氨酸所阻断。因此,DFO和EDHB刺激NO依赖的PKG激活,以打开mitoK(ATP)通道并产生ROS,这些ROS作为第二信使触发进入预处理状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验