Suppr超能文献

用于解决板弯曲问题的新型边界元法。

Novel boundary element method for resolving plate bending problems.

作者信息

Chen Song-ying, Wang Le-qin, Jiao Lei

机构信息

Institute of Chemical Machinery, Zhejiang University, Hangzhou 310027, China.

出版信息

J Zhejiang Univ Sci. 2003 Sep-Oct;4(5):584-90. doi: 10.1631/jzus.2003.0584.

Abstract

This paper discusses the application of the boundary contour method for resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation based on the Kirchhoff hypothesis and a very useful application of Stokes' Theorem are presented to convert surface integrals on boundary elements to the computation of bending potential functions on the discretized boundary points, even for curved surface elements of arbitrary shape. Singularity and treatment of the discontinued corner point are not needed at all. The evaluation of the physics variant at internal points is also shown in this article. Numerical results are presented for some plate bending problems and compared against analytical and previous solutions.

摘要

本文讨论了边界轮廓法在解决薄板弯曲问题中的应用。基于基尔霍夫假设,利用薄板弯曲边界积分方程的被积函数无散度特性,并通过斯托克斯定理的一个非常有用的应用,将边界单元上的面积分转换为离散边界点上弯曲势函数的计算,即使对于任意形状的曲面单元也是如此。完全不需要奇点和对间断角点的处理。本文还展示了内部点处物理变量的评估。给出了一些薄板弯曲问题的数值结果,并与解析解和先前的解进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验