Suppr超能文献

Eosinophil peroxidase catalyzes JNK-mediated membrane blebbing in a Rho kinase-dependent manner.

作者信息

McElhinney Brian, Poynter Matthew E, Shrivastava Punya, Hazen Stanley L, Janssen-Heininger Yvonne M W

机构信息

Department of Pathology, University of Vermont, Burlington, VT 05405, USA.

出版信息

J Leukoc Biol. 2003 Nov;74(5):897-907. doi: 10.1189/jlb.0103028. Epub 2003 Aug 11.

Abstract

Eosinophilic influx is characteristic of numerous inflammatory conditions. Eosinophil peroxidase (EPO) is a major enzyme present in eosinophils and upon degranulation, becomes released into the airways of asthmatics. As a result of its cationic nature and its ability to catalyze the formation of highly toxic oxidants, EPO has significant potential to induce cellular injury. The focus of the present study was to determine the cell-signaling events important in EPO-induced death of lung epithelial cells. In the presence of hydrogen peroxide and nitrite (NO2-; hereafter called EPO with substrates), EPO catalyzes the formation of nitrogen dioxide. EPO with substrates induced rapid and sustained activation of c-Jun-NH2-terminal kinase (JNK) and led to cell death, as was evidenced by enhanced mitochondrial depolarization, cytochrome c release, cleavage of caspases 9 and 3, poly-adenosine 5'-diphosphate ribosylation of proteins, the formation of single-stranded DNA, and membrane permeability. Moreover, EPO with substrates caused Rho-associated coiled coil-containing kinase-1-dependent dynamic membrane blebbing. Inhibition of JNK activity in cells expressing a dominant-negative JNK-1 construct (JNK-APF) prevented mitochondrial membrane depolarization and substantially decreased the number of cells blebbing compared with vector controls. The cellular responses to EPO with substrates were independent of whether NO2-, bromide, or thiocyanide was used as substrates. Our findings demonstrate that catalytically active EPO is capable of causing significant damage to lung epithelial cells in vitro and that this involves the activation of JNK.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验