Suppr超能文献

Diethylsulphate and methylnitrosourea affect different targets in Chinese hamster fibroblasts: possible mechanisms of aneuploidy induction by these agents.

作者信息

Campagna M, Beffy P, Del Carratore R, Hauri L, Simi S, Bonatti S, Simili M

机构信息

Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, I-56124 Pisa, Italy.

出版信息

Mutagenesis. 2003 Sep;18(5):405-10. doi: 10.1093/mutage/geg012.

Abstract

It has been shown that the ethylating agent diethylsulphate (DES) induces centromere-containing micronuclei with kinetics suggesting that molecules other than DNA could be targets. In quiescent Chinese hamster fibroblasts CHEF/18, O6-alkylated bases inhibit ribosomal protein S6 kinase (S6K1), the terminal member of a kinase cascade responsible for an increased rate of protein synthesis, but not extracellular signal-activated kinases (ERK1/2) or terminal kinases of a second cascade which activates transcription. The inhibition correlates with the appearance of abnormal metaphases at the following mitosis, suggesting that alkylation of the nucleotide pool and inhibition of S6K1 could be one of the mechanisms leading to chromosome loss by alkylating agents. To clarify the role of protein kinases in chromosome loss induced by alkylating agents, we have studied the effects of DES and methylnitrosourea (MNU) on S6K1 and ERK1/2 activation by growth factors. The alkylating agents were studied in a battery of Chinese hamster fibroblasts (CHEF/18, CHO and ClB) with normal and mutated p53 to control for DNA damage-induced activation of p53, which could indirectly inhibit protein kinases. The role of repair in induction of micronuclei was studied in mismatch repair-proficient CHO and repair-deficient ClB cells. Our results indicate that DES induced micronuclei in a mismatch repair-independent manner, within 8 h of treatment, in agreement with a role for S6K1 inhibition in micronucleus formation. MNU induced centromere-containing micronuclei only in CHO cells, one cell cycle after treatment, without any detectable influences on either kinase cascade, suggesting a role for mismatch repair in chromosome loss.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验