Suppr超能文献

[左旋肉碱:代谢、功能及在病理学中的价值]

[L-carnitine: metabolism, functions and value in pathology].

作者信息

Jacob C, Belleville F

机构信息

Laboratoire de Biochimie B-CHRU Nancy, France.

出版信息

Pathol Biol (Paris). 1992 Nov;40(9):910-9.

PMID:1296165
Abstract

Although L-carnitine is not considered as an essential nutrient, endogenous synthesis may fail to ensure adequate L-carnitine levels in neonates, especially those born prematurely. Free L-carnitine is found in many foods, mainly those from animal sources. Absorption of free L-carnitine is virtually complete. Lysine and methionine are necessary ingredients for the biosynthesis of L-carnitine. All tissues in the body can produce deoxy-carnitine but, in humans, the enzyme that enables hydroxylation of deoxy-carnitine to carnitine is found only in the liver, brain and kidneys. Complex exchanges of carnitine and its precursors occur between tissues. Muscles take up carnitine from the bloodstream and contain most of the body carnitine stores. L-carnitine and L-carnitine esters are eliminated mainly through the kidneys, which may play a central role in the homeostasis of this compound. Thyroid hormones adrenocorticotrophin (ACTH), and diet all influence urinary excretion of L-carnitine. Free L-carnitine can be assayed in plasma and urine and is occasionally measured in muscle biopsy specimens. Plasma L-carnitine levels may not accurately reflect L-carnitine body stores. L-carnitine ensures transfer of fatty acids to the mitochondria where they undergo oxidation. This process is associated with production of short-chain acylcarnitine which exit from the mitochondria or peroxisomes. L-carnitine ensures regeneration of coenzyme A and is thus involved in energy metabolism. L-carnitine also ensures elimination of xenobiotic substances. Carnitine deficiencies are common. Currently, these deficiencies are classified into two groups. In deficiencies with myopathy, only the muscles are deficient in L-carnitine, perhaps as a result of a primary anomaly of the L-carnitine transport system in muscles. In systemic deficiencies, L-carnitine levels are low in the plasma and in all body tissues. Systemic L-carnitine deficiencies are usually the result of a variety of disease states including deficient intake in premature infants or long-term parenteral nutrition; renal failure; organic acidemias; and Reye's syndrome. Modifications in L-carnitine metabolism have also been reported in patients with diabetes mellitus, malignancies, myocardial ischemia, and alcohol abuse. A large number of supplementation trials have been carried out.

摘要

虽然左旋肉碱不被视为必需营养素,但内源性合成可能无法确保新生儿,尤其是早产儿体内有足够的左旋肉碱水平。游离左旋肉碱存在于许多食物中,主要是动物源性食物。游离左旋肉碱的吸收几乎是完全的。赖氨酸和蛋氨酸是左旋肉碱生物合成的必需成分。身体的所有组织都能产生脱氧肉碱,但在人类中,能使脱氧肉碱羟基化生成肉碱的酶仅存在于肝脏、大脑和肾脏中。肉碱及其前体在组织之间进行复杂的交换。肌肉从血液中摄取肉碱,并储存了体内大部分的肉碱。左旋肉碱和左旋肉碱酯主要通过肾脏排出,肾脏可能在这种化合物的体内平衡中起核心作用。甲状腺激素、促肾上腺皮质激素(ACTH)和饮食都会影响左旋肉碱的尿排泄。游离左旋肉碱可在血浆和尿液中检测,偶尔也会在肌肉活检标本中测量。血浆左旋肉碱水平可能无法准确反映体内的左旋肉碱储备。左旋肉碱可确保脂肪酸转运至线粒体进行氧化。这一过程会产生从线粒体或过氧化物酶体中排出的短链酰基肉碱。左旋肉碱可确保辅酶A的再生,因此参与能量代谢。左旋肉碱还可确保外源性物质的清除。肉碱缺乏很常见。目前,这些缺乏症分为两类。在伴有肌病的缺乏症中,只有肌肉缺乏左旋肉碱,这可能是由于肌肉中左旋肉碱转运系统的原发性异常所致。在全身性缺乏症中,血浆和所有身体组织中的左旋肉碱水平都很低。全身性左旋肉碱缺乏通常是多种疾病状态的结果,包括早产儿摄入不足或长期肠外营养、肾衰竭、有机酸血症以及瑞氏综合征。糖尿病、恶性肿瘤、心肌缺血和酗酒患者也有左旋肉碱代谢改变的报道。已经进行了大量的补充试验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验