Suppr超能文献

结核分枝杆菌二氢二吡啶甲酸还原酶-NADH-2,6-PDC和-NADPH-2,6-PDC复合物的三维结构。宽松核苷酸特异性的结构和诱变分析。

The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.

作者信息

Cirilli Maurizio, Zheng Renjian, Scapin Giovanna, Blanchard John S

机构信息

Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.

出版信息

Biochemistry. 2003 Sep 16;42(36):10644-50. doi: 10.1021/bi030044v.

Abstract

Dihydrodipicolinate reductase (DHPR) catalyzes the reduced pyridine nucleotide-dependent reduction of the alpha,beta-unsaturated cyclic imine, dihydrodipicolinate, to generate tetrahydrodipicolinate. This enzyme catalyzes the second step in the bacterial biosynthetic pathway that generates meso-diaminopimelate, a component of bacterial cell walls, and the amino acid L-lysine. The Mycobacterium tuberculosis dapB-encoded DHPR has been cloned, expressed, purified, and crystallized in two ternary complexes with NADH or NADPH and the inhibitor 2,6-pyridinedicarboxylate (2,6-PDC). The structures have been solved using molecular replacement strategies, and the DHPR-NADH-2,6-PDC and DHPR-NADPH-2,6-PDC complexes have been refined against data to 2.3 and 2.5 A, respectively. The M. tuberculosis DHPR is a tetramer of identical subunits, with each subunit composed of two domains connected by two flexible hinge regions. The N-terminal domain binds pyridine nucleotide, while the C-terminal domain is involved in both tetramer formation and substrate/inhibitor binding. The M. tuberculosis DHPR uses NADH and NADPH with nearly equal efficiency based on V/K values. To probe the nature of this substrate specificity, we have generated two mutants, K9A and K11A, residues that are close to the 2'-phosphate of NADPH. These two mutants exhibit decreased specificity for NADPH by factors of 6- and 30-fold, respectively, but the K11A mutant exhibits 270% of WT activity using NADH. The highly conserved structure of the nucleotide fold may permit other enzyme's nucleotide specificity to be altered using similar mutagenic strategies.

摘要

二氢吡啶二羧酸还原酶(DHPR)催化α,β-不饱和环状亚胺二氢吡啶二羧酸依赖于还原型吡啶核苷酸的还原反应,生成四氢吡啶二羧酸。该酶催化细菌生物合成途径中的第二步反应,该途径产生细菌细胞壁的组成成分内消旋二氨基庚二酸以及氨基酸L-赖氨酸。结核分枝杆菌dapB编码的DHPR已被克隆、表达、纯化,并与NADH或NADPH以及抑制剂2,6-吡啶二甲酸(2,6-PDC)形成两种三元复合物后结晶。这些结构已通过分子置换策略解析出来,并且DHPR-NADH-2,6-PDC和DHPR-NADPH-2,6-PDC复合物分别已针对2.3 Å和2.5 Å的数据进行了精修。结核分枝杆菌DHPR是由相同亚基组成的四聚体,每个亚基由通过两个柔性铰链区连接的两个结构域组成。N端结构域结合吡啶核苷酸,而C端结构域既参与四聚体形成又参与底物/抑制剂结合。基于V/K值,结核分枝杆菌DHPR对NADH和NADPH的利用效率几乎相同。为了探究这种底物特异性的本质,我们构建了两个突变体K9A和K11A,它们是靠近NADPH的2'-磷酸基团的残基。这两个突变体对NADPH的特异性分别降低了6倍和30倍,但K11A突变体使用NADH时表现出野生型活性的270%。核苷酸折叠的高度保守结构可能允许使用类似的诱变策略改变其他酶的核苷酸特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验