Suppr超能文献

缺乏肌酸激酶的小鼠骨骼肌中收缩介导的糖原分解:磷酸化酶b激活的作用

Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.

作者信息

Katz Abram, Andersson Daniel C, Yu Josephine, Norman Barbara, Sandstrom Marie E, Wieringa Be, Westerblad Hakan

机构信息

Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden.

出版信息

J Physiol. 2003 Dec 1;553(Pt 2):523-31. doi: 10.1113/jphysiol.2003.051078. Epub 2003 Sep 8.

Abstract

Skeletal muscle that is deficient in creatine kinase (CK-/-) exhibits accelerated glycogenolysis during contraction. Understanding this phenomenon could provide insight into the control of glycogenolysis during contraction. Therefore, glycogen breakdown was investigated in isolated extensor digitorum longus CK-/- muscle. Muscles were stimulated to produce repeated tetani for 20 s in the presence of sodium cyanide to block mitochondrial respiration. Accumulation of lactate after stimulation was similar in wild-type (WT) and CK-/- muscles, whereas accumulation of glucose-6-phosphate was twofold higher in CK-/- muscles, indicating greater glycogenolysis in CK-/- muscles. Total phosphorylase activity was decreased by almost 30 % in CK-/- muscle (P < 0.001). Phosphorylase fractional activity (-/+ 3.3 mM AMP) was similar in both groups in the basal state (about 10 %), but increased to a smaller extent in CK-/- muscles after stimulation (39 +/- 4 % vs. 52 +/- 4 % in WT, P < 0.05). Inorganic phosphate, the substrate for phosphorylase, increased marginally in CK-/- muscles after stimulation (basal = 25.3 +/- 2.2 micromol (g dry muscle)-1; stimulated = 33.9 +/- 2.3 micromol (g dry muscle)-1), but substantially in WT muscles (basal = 11.4 +/- 0.7 micromol (g dry muscle)-1; stimulated = 54.2 +/- 4.5 micromol (g dry muscle)-1). Kinetic studies of phosphorylase b (dephosphorylated enzyme) from muscle extracts in vitro demonstrated higher relative activities in CK-/- muscles (60-135 %) in response to low AMP concentrations (up to 50 microM) in both the basal state and after stimulation (P < 0.05), whereas no differences in activity between CK-/- and WT muscles were observed at high AMP concentrations (> 100 microM). These data indicate that allosteric activation of phosphorylase b accounts for the accelerated glycogenolysis in CK-/- muscle during contraction.

摘要

缺乏肌酸激酶(CK-/-)的骨骼肌在收缩过程中糖原分解加速。了解这一现象有助于深入了解收缩过程中糖原分解的调控机制。因此,研究人员对分离的趾长伸肌CK-/-肌肉中的糖原分解情况进行了研究。在存在氰化钠以阻断线粒体呼吸的情况下,刺激肌肉产生持续20秒的重复强直收缩。刺激后,野生型(WT)和CK-/-肌肉中乳酸的积累情况相似,而CK-/-肌肉中6-磷酸葡萄糖的积累量高出两倍,这表明CK-/-肌肉中的糖原分解更为剧烈。CK-/-肌肉中的总磷酸化酶活性降低了近30%(P < 0.001)。在基础状态下,两组的磷酸化酶分数活性(-/+ 3.3 mM AMP)相似(约为(10%),但刺激后CK-/-肌肉中的增加幅度较小(39 +/- 4%,而WT为52 +/- 4%,P < 0.05)。磷酸化酶的底物无机磷酸盐在刺激后CK-/-肌肉中略有增加(基础值 = 25.3 +/- 2.2微摩尔/(克干肌肉)-1;刺激后 = 33.9 +/- 2.3微摩尔/(克干肌肉)-1),但在WT肌肉中显著增加(基础值 = 11.4 +/- 0.7微摩尔/(克干肌肉)-1;刺激后 = 54.2 +/- 4.5微摩尔/(克干肌肉)-1)。对肌肉提取物中的磷酸化酶b(去磷酸化酶)进行的体外动力学研究表明在基础状态和刺激后,CK-/-肌肉对低浓度AMP(高达50 microM)的反应具有更高的相对活性(60 - 135%)(P < 0.05),而在高浓度AMP(> 100 microM)下,未观察到CK-/-和WT肌肉之间的活性差异。这些数据表明,磷酸化酶b的变构激活是CK-/-肌肉在收缩过程中糖原分解加速的原因。

相似文献

1
Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
J Physiol. 2003 Dec 1;553(Pt 2):523-31. doi: 10.1113/jphysiol.2003.051078. Epub 2003 Sep 8.
3
Effect of acute activation of 5'-AMP-activated protein kinase on glycogen regulation in isolated rat skeletal muscle.
J Appl Physiol (1985). 2007 Mar;102(3):1007-13. doi: 10.1152/japplphysiol.01034.2006. Epub 2006 Nov 22.
4
Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man.
Acta Physiol Scand. 1990 Jul;139(3):467-74. doi: 10.1111/j.1748-1716.1990.tb08948.x.
5
Impaired muscular contractile performance and adenine nucleotide handling in creatine kinase-deficient mice.
Am J Physiol Endocrinol Metab. 2001 Sep;281(3):E619-25. doi: 10.1152/ajpendo.2001.281.3.E619.
6
The effect of adrenaline infusion on the regulation of glycogenolysis in human muscle during isometric contraction.
Acta Physiol Scand. 1985 Jan;123(1):55-60. doi: 10.1111/j.1748-1716.1985.tb07560.x.
7
Hypoxia causes glycogenolysis without an increase in percent phosphorylase a in rat skeletal muscle.
Am J Physiol. 1992 Dec;263(6):E1086-91. doi: 10.1152/ajpendo.2006.263.6.E1086.
9
Reversal of phosphorylase activation in muscle despite continued contractile activity.
Am J Physiol. 1979 Nov;237(5):R291-6. doi: 10.1152/ajpregu.1979.237.5.R291.
10
Glutathione-dependent reduction of arsenate by glycogen phosphorylase a reaction coupled to glycogenolysis.
Toxicol Sci. 2007 Nov;100(1):36-43. doi: 10.1093/toxsci/kfm211. Epub 2007 Aug 9.

引用本文的文献

1
A century of exercise physiology: key concepts in regulation of glycogen metabolism in skeletal muscle.
Eur J Appl Physiol. 2022 Aug;122(8):1751-1772. doi: 10.1007/s00421-022-04935-1. Epub 2022 Mar 30.
2
Skeletal Muscle in ALS: An Unappreciated Therapeutic Opportunity?
Cells. 2021 Mar 2;10(3):525. doi: 10.3390/cells10030525.
4
Isoproterenol enhances force production in mouse glycolytic and oxidative muscle via separate mechanisms.
Pflugers Arch. 2019 Oct;471(10):1305-1316. doi: 10.1007/s00424-019-02304-0. Epub 2019 Aug 21.
5
Elongated mitochondrial constrictions and fission in muscle fatigue.
J Cell Sci. 2018 Dec 5;131(23):jcs221028. doi: 10.1242/jcs.221028.
7
Regulation of glycogen breakdown and its consequences for skeletal muscle function after training.
Mamm Genome. 2014 Oct;25(9-10):464-72. doi: 10.1007/s00335-014-9519-x. Epub 2014 Apr 29.
8
Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure.
FASEB J. 2013 May;27(5):1928-38. doi: 10.1096/fj.12-225037. Epub 2013 Jan 23.
9
Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase deficiency.
J Physiol. 2011 Nov 1;589(Pt 21):5193-211. doi: 10.1113/jphysiol.2011.212829. Epub 2011 Aug 30.

本文引用的文献

1
Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice.
Mol Cell Biochem. 2004 Jan-Feb;256-257(1-2):13-27. doi: 10.1023/b:mcbi.0000009856.23646.38.
2
Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice.
J Physiol. 2003 Oct 15;552(Pt 2):393-402. doi: 10.1113/jphysiol.2003.050732.
5
Glycogen phosphorylase as a molecular target for type 2 diabetes therapy.
Curr Protein Pept Sci. 2002 Dec;3(6):561-86. doi: 10.2174/1389203023380422.
6
Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice.
Am J Physiol Cell Physiol. 2002 Dec;283(6):C1776-83. doi: 10.1152/ajpcell.00210.2002.
7
Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice.
J Physiol. 2001 Jun 1;533(Pt 2):379-88. doi: 10.1111/j.1469-7793.2001.0379a.x.
8
Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus.
Expert Opin Investig Drugs. 2001 Mar;10(3):439-54. doi: 10.1517/13543784.10.3.439.
10
Effects of ischemia on skeletal muscle energy metabolism in mice lacking creatine kinase monitored by in vivo 31P nuclear magnetic resonance spectroscopy.
NMR Biomed. 1999 Oct;12(6):327-34. doi: 10.1002/(sici)1099-1492(199910)12:6<327::aid-nbm570>3.0.co;2-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验