Rassier Dilson E, Herzog Walter, Pollack Gerald H
Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
Proc Biol Sci. 2003 Aug 22;270(1525):1735-40. doi: 10.1098/rspb.2003.2418.
It is generally assumed that sarcomere lengths (SLs) change in isometric fibres following activation and following stretch on the descending limb of the force-length relationship, because of an inherent instability. Although this assumption has never been tested directly, instability and SL non-uniformity have been associated with several mechanical properties, such as 'creep' and force enhancement. The aim of this study was to test directly the hypothesis that sarcomeres are unstable on the descending limb of the force-length relationship. We used single myofibrils, isolated from rabbit psoas, that were attached to glass needles that allowed for controlled stretching of myofibrils. Images of the sarcomere striation pattern were projected onto a linear photodiode array, which was scanned at 20 Hz to produce dark-light patterns corresponding to the A- and I-bands, respectively. Starting from a mean SL of 2.55 +/- 0.07 microm, stretches of 11.2 +/- 1.6% of SL at a speed of 118.9 +/- 5.9 nm s(-1) were applied to the activated myofibrils (pCa(2+) = 4.75). SLs along the myofibril were non-uniform before, during and after the stretch, but with few exceptions, they remained constant during the isometric period before stretch, and during the extended isometric period after stretch. Sarcomeres never lengthened to a point beyond thick and thin filament overlap. We conclude that sarcomeres are non-uniform but generally stable on the descending limb of the force-length relationship.
一般认为,由于内在的不稳定性,等长纤维在激活后以及在力-长度关系的下降支上受到拉伸时,肌节长度(SLs)会发生变化。尽管这一假设从未得到直接验证,但不稳定性和SL的不均匀性已与多种力学特性相关联,如“蠕变”和力增强。本研究的目的是直接验证肌节在力-长度关系下降支上不稳定这一假设。我们使用从兔腰大肌分离出的单个肌原纤维,将其附着在玻璃针上,以便对肌原纤维进行可控拉伸。肌节条纹图案的图像投射到线性光电二极管阵列上,该阵列以20Hz的频率进行扫描,分别产生对应于A带和I带的暗-亮图案。从平均SL为2.55±0.07μm开始,以118.9±5.9nm s(-1)的速度对激活的肌原纤维(pCa(2+)=4.75)施加SL的11.2±1.6%的拉伸。在拉伸前、拉伸期间和拉伸后,沿肌原纤维的SL是不均匀的,但除少数情况外,在拉伸前的等长期间以及拉伸后的延长等长期间,它们保持恒定。肌节从未延长到粗细肌丝重叠之外的程度。我们得出结论,在力-长度关系的下降支上,肌节是不均匀的,但通常是稳定的。