Suppr超能文献

Axonal sprouting in the optic nerve is not a prerequisite for successful regeneration.

作者信息

Dunlop Sarah A

机构信息

Neurobiology Laboratory, School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

出版信息

J Comp Neurol. 2003 Oct 20;465(3):319-34. doi: 10.1002/cne.10782.

Abstract

Axonal sprouting, the production of axons additional to the parent one, occurs during optic nerve regeneration in goldfish and the frog Rana pipiens, with numbers of regenerate axons exceeding normal values four- to sixfold (Murray [1982] J. Comp. Neurol. 209:352-362; Stelzner and Strauss [1986] J. Comp. Neurol. 245:83-103). To determine whether axonal sprouting is a prerequisite for regeneration, the frog Litoria moorei was examined, a species that undergoes successful optic nerve regeneration but with a different time course compared with R. pipiens. Sprouting was assessed, as in goldfish and R. pipiens, from electron microscopic counts between the lesion and chiasm. However, disconnected axons that persist after axotomy would have falsely elevated the counts. The suspected overlap of these two axon populations was confirmed by labeling regenerate axons anterogradely with DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) and disconnected ones retrogradely with DiA (4-4-dihexadecylaminostyrl 1-N methylpyridinium iodide). Numbers of disconnected axons were estimated after preventing regeneration and subtracted from numbers in regenerate nerves. Throughout, the total number of regenerate axons was approximately one third lower than normal (P < 0.05) supporting a previous finding of minimal axonal sprouting in L. moorei (Dunlop et al. [2002] J. Comp. Neurol. 446:276-287). The validity of the subtractive electron microscopic method was confirmed by retrograde labeling to estimate numbers of retinal ganglion cells whose axons had crossed the lesion; values were approximately one third lower than normal. The data suggest that sprouting is not essential for either axon outgrowth or topographic map refinement.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验