Suppr超能文献

Tryptophan phosphorescence spectroscopy reveals that a domain in the NAD(H)-binding component (dI) of transhydrogenase from Rhodospirillum rubrum has an extremely rigid and conformationally homogeneous protein core.

作者信息

Broos Jaap, Gabellieri Edi, van Boxel Gijs I, Jackson J Baz, Strambini Giovanni B

机构信息

Department of Biochemistry and Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.

出版信息

J Biol Chem. 2003 Nov 28;278(48):47578-84. doi: 10.1074/jbc.M309287200. Epub 2003 Sep 12.

Abstract

The characteristics of tryptophan phosphorescence from the NAD(H)-binding component (dI) component of Rhodospirillum rubrum transhydrogenase are described. This enzyme couples hydride transfer between NAD(H) and NADP(H) to proton translocation across a membrane and is only active as a dimer. Tryptophan phosphorescence spectroscopy is a sensitive technique for the detection of protein conformational changes and was used here to characterize dI under mechanistically relevant conditions. Our results indicate that the single tryptophan in dI, Trp-72, is embedded in a rigid, compact, and homogeneous protein matrix that efficiently suppresses collisional quenching processes and results in the longest triplet lifetime for Trp ever reported in a protein at ambient temperature (2.9 s). The protein matrix surrounding Trp-72 is extraordinarily rigid up to 50 degrees C. In all previous studies on Trp-containing proteins, changes in structure were reflected in a different triplet lifetime. In dI, the lifetime of Trp-72 phosphorescence was barely affected by protein dimerization, cofactor binding, complexation with the NADP(H)-binding component (dIII), or by the introduction of two amino acid substitutions at the hydride-transfer site. It is suggested that the rigidity and structural invariance of the protein domain (dI.1) housing this Trp residue are important to the mechanism of transhydrogenase: movement of dI.1 affects the width of a cleft which, in turn, regulates the positioning of bound nucleotides ready for hydride transfer. The unique protein core in dI may be a paradigm for the design of compact and stable de novo proteins.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验