Liang J Y, Huang S, Zhang Y, Ke H, Lipscomb W N
Gibbs Chemical Laboratory, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2404-8. doi: 10.1073/pnas.89.6.2404.
The three-dimensional structure of the complex between fructose 1,6-bisphosphatase (EC 3.1.3.11) and the physiological inhibitor beta-D-fructose 2,6-bisphosphate (Fru-2,6-P2), an analogue of the substrate (fructose 1,6-bisphosphate), has been refined at 2.6-A resolution to a residual error (R) factor of 0.171. The rms deviations are 0.012 A and 2.88 degrees from ideal geometries of bond lengths and angles, respectively. The Fru-2,6-P2 occupies the active sites of both polypeptides C1 and C2 in the crystallographic asymmetric unit in the space group P3(2)21. The furanose and 6-phosphate of Fru-2,6-P2 are located at the fructose 6-phosphate site established earlier, and the 2-phosphate binds to the OH of Ser-124, the NH3+ of Lys-274, and the backbone NH of Gly-122 and Ser-123. Backbone displacements of 1 A occur for residues from Asp-121 to Asn-125. Model building of substrate alpha-D-Fru-1,6-P2 based on the binding structure of Fru-2,6-P2 in the active site shows interactions of the 1-phosphate with the backbone NH of Ser-123 and Ser-124. In the AMP sites, density peaks attributed to Fru-2,6-P2 are seen in C1 (and C4) but not in C2 (and C3). This minor binding of Fru-2,6-P2 to AMP sites partially explains the synergistic interaction between AMP and Fru-2,6-P2 and the protection of the AMP site from acetylation in the presence of Fru-2,6-P2. In the synergistic interaction between AMP and Fru-2,6-P2, inhibition of catalytic metal binding by the presence of Fru-2,6-P2 at the active site, and propagation of structural changes over some 28 A along beta-strand B3 from residues 121 to 125 in the active site to Lys-112 and Tyr-113 in the AMP site, as well as movement of helices across the interdimeric interfaces, may affect AMP binding and the subsequent R-to-T transition. In addition, occupancy of Fru-2,6-P2 at the AMP sites of C1 and C4 may favor binding of AMP to the remaining unoccupied AMP sites and thus promote the accompanying quaternary conformational changes.
果糖1,6 - 二磷酸酶(EC 3.1.3.11)与生理抑制剂β - D - 果糖2,6 - 二磷酸(Fru - 2,6 - P2,底物果糖1,6 - 二磷酸的类似物)复合物的三维结构已在2.6埃分辨率下进行了精修,残余误差(R)因子为0.171。键长和键角与理想几何结构的均方根偏差分别为0.012埃和2.88度。在空间群P3(2)21的晶体学不对称单元中,Fru - 2,6 - P2占据了多肽C1和C2的活性位点。Fru - 2,6 - P2的呋喃糖和6 - 磷酸位于先前确定的果糖6 - 磷酸位点,2 - 磷酸与Ser - 124的OH、Lys - 274的NH3 +以及Gly - 122和Ser - 123的主链NH结合。从Asp - 121到Asn - 125的残基主链位移为1埃。基于Fru - 2,6 - P2在活性位点的结合结构对底物α - D - Fru - 1,6 - P2进行的模型构建显示,1 - 磷酸与Ser - 123和Ser - 124的主链NH相互作用。在AMP位点,在C1(和C4)中可见归因于Fru - 2,6 - P2的密度峰,而在C2(和C3)中则未观察到。Fru - 2,6 - P2与AMP位点的这种微弱结合部分解释了AMP与Fru - 2,6 - P2之间的协同相互作用以及在Fru - 2,6 - P2存在下AMP位点免受乙酰化的保护作用。在AMP与Fru - 2,6 - P2的协同相互作用中,活性位点处Fru - 2,6 - P2的存在对催化金属结合的抑制作用,以及从活性位点中121至125位残基沿着β链B3约28埃的结构变化传播至AMP位点中的Lys - 112和Tyr - 113,以及跨二聚体界面的螺旋移动,可能会影响AMP的结合以及随后的R态到T态转变。此外,Fru - 2,6 - P2在C1和C4的AMP位点的占据可能有利于AMP与其余未占据的AMP位点结合,从而促进伴随的四级构象变化。