Suppr超能文献

果糖-1,6-二磷酸酶的中心空腔与真核生物中 AMP/果糖 2,6-二磷酸协同作用的进化。

Central cavity of fructose-1,6-bisphosphatase and the evolution of AMP/fructose 2,6-bisphosphate synergism in eukaryotic organisms.

机构信息

From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011.

出版信息

J Biol Chem. 2014 Mar 21;289(12):8450-61. doi: 10.1074/jbc.M114.548586. Epub 2014 Jan 16.

Abstract

The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser(45) → His substantially fills the central cavity of pFBPase, and the triple mutation Ser(45) → His, Thr(46) → Arg, and Leu(186) → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P.

摘要

AMP 和果糖 2,6-二磷酸 (Fru-2,6-P2) 对猪果糖-1,6-二磷酸酶 (pFBPase) 和大肠杆菌 FBPase (eFBPase) 的影响在三个方面不同。AMP/Fru-2,6-P2 协同作用在 pFBPase 中不存在于 eFBPase 中。Fru-2,6-P2 诱导 pFBPase 中 13°亚基对旋转,但在 eFBPase 中没有旋转。eFBPase 中的亲水侧链占据了 otherwise 否则会在 pFBPase 中观察到的中央水腔。这里探讨的是 AMP/Fru-2,6-P2 协同作用与中央腔的联系以及 FBPases 中协同作用的进化。单一突变 Ser(45)→His 实质上填满了 pFBPase 的中央腔,而三重突变 Ser(45)→His、Thr(46)→Arg 和 Leu(186)→Tyr 将猪的侧链替换为大肠杆菌型侧链。单突变和三重突变都显著降低协同作用,同时保留其他野生型动力学特性。类似于 Fru-2,6-P2 对 eFBPase 的影响,结合 Fru-2,6-P2 的 pFBPase 三重突变体仅表现出 2°亚基对旋转,而不是野生型 pFBPase 的 Fru-2,6-P2 复合物表现出的 13°旋转。位置 45 的侧链在所有可用的真核 FBPases 中都很小,但在细菌 FBPases 中很大且亲水,类似于 eFBPase。序列信息表明钩端螺旋体 (lFBPase) 的 FBPase 中存在协同作用的可能性,事实上重组 lFBPase 表现出 AMP/Fru-2,6-P2 协同作用。然而,出乎意料的是,AMP 也增强了 Fru-6-P 与 lFBPase 的结合。综上所述,这些观察结果表明,真核 FBPases 中 AMP/Fru-2,6-P2 协同作用的进化来自于具有中央水腔并表现出 AMP 和 Fru-6-P 协同反馈抑制的祖先 FBPase。

相似文献

1
Central cavity of fructose-1,6-bisphosphatase and the evolution of AMP/fructose 2,6-bisphosphate synergism in eukaryotic organisms.
J Biol Chem. 2014 Mar 21;289(12):8450-61. doi: 10.1074/jbc.M114.548586. Epub 2014 Jan 16.
5
Novel allosteric activation site in Escherichia coli fructose-1,6-bisphosphatase.
J Biol Chem. 2006 Jul 7;281(27):18386-93. doi: 10.1074/jbc.M602553200. Epub 2006 May 2.
9
Site-directed mutagenesis of the substrate binding site of porcine fructose-1,6-bisphosphatase.
Arch Biochem Biophys. 1995 May 10;319(1):123-7. doi: 10.1006/abbi.1995.1273.

引用本文的文献

1
Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials.
Signal Transduct Target Ther. 2023 Sep 6;8(1):335. doi: 10.1038/s41392-023-01589-z.
2
Structures of Leishmania Fructose-1,6-Bisphosphatase Reveal Species-Specific Differences in the Mechanism of Allosteric Inhibition.
J Mol Biol. 2017 Oct 13;429(20):3075-3089. doi: 10.1016/j.jmb.2017.08.010. Epub 2017 Sep 4.
3
T-to-R switch of muscle fructose-1,6-bisphosphatase involves fundamental changes of secondary and quaternary structure.
Acta Crystallogr D Struct Biol. 2016 Apr;72(Pt 4):536-50. doi: 10.1107/S2059798316001765. Epub 2016 Mar 30.

本文引用的文献

1
Mechanism of displacement of a catalytically essential loop from the active site of mammalian fructose-1,6-bisphosphatase.
Biochemistry. 2013 Aug 6;52(31):5206-16. doi: 10.1021/bi400532n. Epub 2013 Jul 24.
2
Reorganizing the protein space at the Universal Protein Resource (UniProt).
Nucleic Acids Res. 2012 Jan;40(Database issue):D71-5. doi: 10.1093/nar/gkr981. Epub 2011 Nov 18.
3
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.
7
Evolutionary analysis of fructose 2,6-bisphosphate metabolism.
IUBMB Life. 2006 Mar;58(3):133-41. doi: 10.1080/15216540600688280.
8
Novel allosteric activation site in Escherichia coli fructose-1,6-bisphosphatase.
J Biol Chem. 2006 Jul 7;281(27):18386-93. doi: 10.1074/jbc.M602553200. Epub 2006 May 2.
10
R-state AMP complex reveals initial steps of the quaternary transition of fructose-1,6-bisphosphatase.
J Biol Chem. 2005 May 20;280(20):19737-45. doi: 10.1074/jbc.M501011200. Epub 2005 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验