Suppr超能文献

Chick limb bud mesodermal cell chondrogenesis: inhibition by isoforms of platelet-derived growth factor and reversal by recombinant bone morphogenetic protein.

作者信息

Chen P, Carrington J L, Paralkar V M, Pierce G F, Reddi A H

机构信息

Bone Cell Biology Section, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892.

出版信息

Exp Cell Res. 1992 May;200(1):110-7. doi: 10.1016/s0014-4827(05)80078-3.

Abstract

Platelet-derived growth factor (PDGF) influences the proliferation and differentiation of a variety of cells. In this study, we have investigated the effect of PDGF isoforms on chondrogenesis by stage 24 chick limb bud mesoderm cells in culture. Synthesis of sulfated proteoglycans, an index of chondrogenesis, was inhibited by all three PDGF isoforms (PDGF-AA, PDGF-AB, and PDGF-BB). Application of PDGF isoforms during the first 2 days of culture, before the cells were overtly differentiating, resulted in decreased synthesis of sulfated proteoglycans. This was similar to when PDGF isoforms were present throughout the culture period. However, application of PDGF isoform during only the last 2 days of culture, did not inhibit cartilage matrix production. When chondrogenic and nonchondrogenic cells were separated from the cultures and replated, PDGF-AB and PDGF-BB inhibited the incorporation of sulfate by the chondrogenic cells. Recombinant bone morphogenetic protein 2B reversed the inhibitory effects of PDGF on sulfated proteoglycan synthesis and DNA synthesis. PDGF receptor binding analysis indicated that beta-receptors were predominant receptors present on the chondrogenic and nonchondrogenic cells of the stage 24 mesoderm. PDGF isoforms increased thymidine incorporation by 48 h in both high and low density cultures. However, at later periods, cell proliferation was inhibited by PDGF-AA and PDGF-AB but not by PDGF-BB. PDGF acted as a bifunctional modulator of mesodermal cell proliferation and thus may regulate chondrogenesis during limb differentiation and morphogenesis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验