Campos M, Beaugé L
División de Biofísica, Instituto de Investigación Médica M. y M. Ferreyra, Córdoba, Argentina.
Biochim Biophys Acta. 1992 Mar 23;1105(1):51-60. doi: 10.1016/0005-2736(92)90161-e.
The aim of the present work was to elucidate the role played by ATP and Mg2+ ions in the early steps of the Na+,K(+)-ATPase cycle. The approach was to follow pre-steady-state phosphorylation kinetics in Na(+)-containing K(+)-free solutions under variable ATP and MgCl2 concentrations. The experiments were performed with a rapid mixing apparatus at 20 +/- 2 degrees C. The concentrations of free and complexes species of Mg2+ and ATP were calculated on the basis of a dissociation constant of 0.091 +/- 0.004 mM, estimated with Arsenazo III under identical conditions. A simplified scheme were ATP binds to the ENa enzyme, which is phosphorylated to MgEPNa and consequently dephosphorylated returning to the ENa form, was used. In the absence of ADP and phosphate four rate constants are relevant: k1 and k-1, the on and off rate constants for ATP binding; k2, the transphosphorylation rate constant and k3, the constant that governs the dephosphorylation rate. The values obtained were: k1 = 0.025 +/- 0.003 microM-1 ms-1 for both free ATP and ATPMg; k-1 = 0.038 +/- 0.004 ms-1 for free ATP and 0.009 +/- 0.002 ms-1 for ATPMg; k2 = 0.199 +/- 0.005 ms-1; k3 = 0.0019 +/- 0.0002 ms-1. The model that seems best to explain the data is one where (i) the role of true substrate can be played equally well by free ATP or ATPMg, and (ii) free Mg2+, an essential activator, acts by binding to a specific Mg2+ site on the enzyme molecule.
本研究的目的是阐明ATP和Mg2+离子在Na+,K(+)-ATP酶循环早期步骤中所起的作用。研究方法是在含有Na+但不含K+的溶液中,在不同的ATP和MgCl2浓度下跟踪稳态前磷酸化动力学。实验在20±2℃下用快速混合装置进行。Mg2+和ATP的游离及络合物种类的浓度是根据在相同条件下用偶氮胂III估计的0.091±0.004 mM的解离常数计算得出的。采用了一个简化的方案,即ATP与ENa酶结合,该酶被磷酸化为MgEPNa,随后去磷酸化回到ENa形式。在不存在ADP和磷酸盐的情况下,有四个速率常数是相关的:k1和k-1,分别是ATP结合的结合和解离速率常数;k2,转磷酸化速率常数;k3,控制去磷酸化速率的常数。得到的值为:游离ATP和ATP-Mg的k1 = 0.025±0.003 μM-1 ms-1;游离ATP的k-1 = 0.038±0.004 ms-1,ATP-Mg的k-1 = 0.009±0.002 ms-1;k2 = 0.199±0.005 ms-1;k3 = 0.0019±0.0002 ms-1。最能解释这些数据的模型是:(i)游离ATP或ATP-Mg都能同样好地发挥真正底物的作用;(ii)游离Mg2+作为一种必需的激活剂,通过与酶分子上的特定Mg2+位点结合而起作用。