Ploug M, Stoffer B, Jensen A L
Institute of Biochemical Genetics, University of Copenhagen, Denmark.
Electrophoresis. 1992 Mar;13(3):148-53. doi: 10.1002/elps.1150130130.
For identification of cysteine residues on microsequence analysis it is crucial to derivatize the sulfhydryl groups. This reaction requires a desalting step which often represents a major obstacle, especially if the sample consists of limited amounts of a hydrophobic membrane protein. An alkylation procedure is described, allowing efficient derivatization (greater than 90%) of cysteines and cystines even in low microgram quantities, as revealed by test analyses with lysozyme and a hydrophobic membrane protein. The modified protein is recovered in high yields in a form suitable for both microsequence analysis and amino acid analysis. The method involves electrophoretic desalting by miniaturized Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and in situ alkylation after electro-transfer onto polyvinylidene difluoride membranes. Precautions against NH2-terminal blocking during sample preparations are provided. The general applicability of the method is illustrated by the structural characterization of the low abundance membrane receptor for human urokinase plasminogen activator.