Kawaja M D, Rosenberg M B, Yoshida K, Gage F H
Department of Neurosciences, University of California, San Diego, La Jolla 92093-0624.
J Neurosci. 1992 Jul;12(7):2849-64. doi: 10.1523/JNEUROSCI.12-07-02849.1992.
Intracerebral grafts consisting of primary fibroblasts genetically engineered to express NGF were used to assess the regenerative capacity of cholinergic neurons of the adult rat septum. Our data reveal that NGF-producing grafts sustain a significantly higher proportion of NGF receptor-immunoreactive septal neurons following axotomy (approximately 65-75%) than do grafts of noninfected fibroblasts. In addition, NGF promotes the regeneration of septal axons. Following the ablation of cholinergic septal projections to the hippocampus, NGF-producing grafts placed within the lesion cavity contain large numbers of AChE-positive axons; control grafts, on the other hand, lack such cholinergic axons. Ultrastructural examination reveals that unmyelinated axons within NGF-producing grafts use many different substrates for growth, including astrocytes and components of the extracellular matrix. Grafts of control fibroblasts possess the same cellular and matrix substrates but contain only a small population of axons, probably of peripheral origin. AChE-positive axons growing through NGF-producing grafts provide a new topographically organized input to the deafferented hippocampal dentate gyrus. Furthermore, regenerating septal axons terminate predominantly on the dendritic processes of granular neurons. The dentate gyrus ipsilateral to grafts of noninfected fibroblasts, on the other hand, remains devoid of AChE-positive fibers. From these results, we conclude that the availability of NGF is a necessary requirement to sustain axotomized cholinergic septal neurons and to promote axon regeneration and cholinergic reinnervation of dentate granular neurons by these lesioned neurons. The presence of many permissive substrates (e.g., astrocytes, basal lamina, and collagen) alone, however, is not sufficient to induce axon regrowth from adult septal neurons.
由经过基因工程改造以表达神经生长因子(NGF)的原代成纤维细胞组成的脑内移植体,被用于评估成年大鼠隔区胆碱能神经元的再生能力。我们的数据显示,与未感染的成纤维细胞移植体相比,产生NGF的移植体在轴突切断后能维持显著更高比例的NGF受体免疫反应性隔区神经元(约65%-75%)。此外,NGF促进隔区轴突的再生。在胆碱能隔区向海马的投射被切除后,置于损伤腔内的产生NGF的移植体含有大量乙酰胆碱酯酶(AChE)阳性轴突;另一方面,对照移植体则缺乏此类胆碱能轴突。超微结构检查显示,产生NGF的移植体内的无髓轴突利用许多不同的底物进行生长,包括星形胶质细胞和细胞外基质成分。对照成纤维细胞移植体具有相同的细胞和基质底物,但仅含有少量可能来自外周的轴突。穿过产生NGF的移植体生长的AChE阳性轴突为去传入的海马齿状回提供了一种新的按拓扑结构组织的输入。此外,再生的隔区轴突主要终止于颗粒神经元的树突过程。另一方面,与未感染的成纤维细胞移植体同侧的齿状回仍然缺乏AChE阳性纤维。从这些结果中,我们得出结论,NGF的可获得性是维持轴突切断的胆碱能隔区神经元以及促进这些受损神经元的轴突再生和对齿状颗粒神经元的胆碱能再支配的必要条件。然而,仅存在许多允许性底物(如星形胶质细胞、基膜和胶原蛋白)不足以诱导成年隔区神经元的轴突再生。