Suppr超能文献

N-methyl-D-aspartate-mediated injury enhances quisqualic acid-stimulated phosphoinositide turnover in perinatal rats.

作者信息

Chen C K, Silverstein F S, Johnston M V

机构信息

Neuroscience Program, University of Michigan, Ann Arbor.

出版信息

J Neurochem. 1992 Sep;59(3):963-71. doi: 10.1111/j.1471-4159.1992.tb08337.x.

Abstract

Previous work in our laboratory demonstrated that ischemic-hypoxic brain injury in postnatal day 7 rats causes a substantial increase in phosphoinositide (PPI) turnover stimulated by the glutamate analogue quisqualic acid (QUIS) in the hippocampus and striatum. To examine this phenomenon in more detail, we performed similar experiments after producing injury by unilateral intracerebral injections of the glutamate analogue N-methyl-D-aspartate (NMDA). The 7-day-old rodent brain is hypersensitive to NMDA neurotoxicity and NMDA injection causes histopathology that closely resembles that produced by ischemia-hypoxia. NMDA, 17 nmol in 0.5 microliter, was injected into the right posterior striatum of 7-day-old rat pups and they were killed 3 days later. Hippocampal or striatal tissue slices were prepared from ipsilateral and contralateral hemispheres from vehicle-injected control and from noninjected control rat pups. Slices were then incubated with myo-[3H]inositol plus glutamate agonists or antagonists in the presence of lithium ions and [3H]inositol monophosphate ([3H]IP1) accumulation was measured. The glutamate agonists, QUIS, L-glutamic acid, and (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, stimulated greater [3H]IP1 release in tissue ipsilateral to the NMDA injection compared with that in the contralateral side and in control pups. The glutamate antagonists, D,L-2-amino-7-phosphonoheptanoic acid, 3-[(+)-2-carboxypiperazin-4-yl]-propyl-1-phosphoric acid, kynurenic acid, and 6,7-dinitroquinoxaline-2,3-dione did not inhibit QUIS-stimulated [3H]IP1 release. The enhanced PPI turnover in the lesioned tissue was specific to glutamate receptors because carbachol (CARB) failed to elicit preferential enhanced stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验