Suppr超能文献

Isolation and characterization of the affinity chromatography forms of human Glu- and Lys-plasminogens and plasmins.

作者信息

Summaria L, Spitz F, Arzadon L, Boreisha I G, Robbins K C

出版信息

J Biol Chem. 1976 Jun 25;251(12):3693-9.

PMID:132440
Abstract

Affinity chromatography forms, 1 and 2, were each isolated from human Glu- and Lys-plasminogens by gradient elution from a L-lysine-substituted Sepharose column with a linear gradient of epsilon-aminocaproic acid. Although each of the two zymogen forms contains two affinity chromatography forms, the relative concentrattions of these forms in each of the zymogen preparations depended upon the plasma sample or enriched plasma fraction used for the preparation of the zymogen. Specific analytical acrylamide gel electrophoretic systems were used for the characterization of the zymogen and enzyme forms, and their component affinity chromatography forms, 1 and 2. The four zymogen affinity chromatography forms, Glu-1-plasminogen, Glu-2-plasminogen, Lys-1-plasminogen, and Lys-2-plasmingoen, show distinct stepwise differences in their molecular size and charge. The Glu-1-form is the largest in molecular size and the most acidic, and the Lys-2-form is the smallest in molecular size and the most basic. The proteolytically altered Lys-1- and Lys-2- forms appear to be specifically df the zymogen affinity chromatography forms showed a different distribution of isoelectric forms. The major isoelectric forms isolated from Glu-plasminogen with pI values of 6.2, 6.3, 6.4, and 6.6, and the major isoelectric forms isolated from Lys-plasminogen with pI values of 6.7, 7.2, 7.5, 7.8, and 8.1, (Summaria, L., Arzadon, L., Bernabe, P., Robbins, K. C., and Barlow, G. H. (1973) J. Biol. Chem. 248, 2984-2991) were shown to be mixtures of the Glu-1- and Glu-2- forms, or the Lys-1- and Lys-2- forms, respectively. Although the sialic acid contents of the Glu- and Lys- forms appear to be similar, the isolated affinity chromatography forms show distinct differences. The sialic acid contents of the Glu-1- and Lys-1- forms are identical, and are substantially higher than the sialic acid contents of the Glu-2- and Lys-2- forms which are also identical to each other. It is possible that the charge difference between the zymogen-1- and -2- forms may be related to the differences in their sialic acid content. Each of the four zymogen affinity chromatography forms, when activated by urokinase in the presence of the plasmin inhibitor, Trasylol, was converted to an apparently unique and different enzyme form. The four enzyme forms show distinct stepwise differences in molecular size; Glu-1-plasmin is the largest in size whereas Lys-2-plasmin is the smallest in size. Each plasmin-derived carboxymethyl heavy(A) chain was found to be different in molecular size, but the two carboxymethyl light(B) chains found in each of the four enzyme forms appeared to be identical and of the same molecular sizes. The four heavy(A) chains show a stepwise difference in molecular size; the Glu-1-heavy(A) chain is the largest in size whereas the Lys-2-heavy(A) chain is the smallest in size...

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验