Suppr超能文献

Borate and molybdate inhibition of catechol estrogen and pyrocatechol methylation by catechol-O-methyltransferase.

作者信息

Beattie J H, Weersink E

机构信息

Division of Biochemical Sciences, Rowett Research Institute, Bucksburn, Aberdeen, U.K.

出版信息

J Inorg Biochem. 1992 May 15;46(3):153-60. doi: 10.1016/0162-0134(92)80026-r.

Abstract

The possibility that boron and molybdenum anions can influence sex steroid metabolism by forming complexes with catechol estrogens has been studied in vitro. The formation of 2-methoxyestrone (2-OHE1 2-Me) from 2-hydroxyestrone (2-OHE1) by catechol-O-methyltransferase (COMT) was followed by measuring the transfer of the radiolabeled methyl group from S-adenosylmethionine. In the presence of both sodium tetraborate and sodium molybdate using a phosphate buffer medium, the formation of 2-OHE1 2-Me decreased as the anion:2-OHE1 molar ratio was increased. However, the reverse effect was observed when using a tris buffer medium and further investigation showed that phosphate and sulphate also enhanced COMT activity in a tris buffer medium. Boric acid affinity medium, used as a substitute for borate salt, also showed a negative relationship with enzyme activity in a phosphate buffer medium, and inhibition of methylation was more marked than with the free anion. Erythrocytes contain appreciable amounts of COMT, which is mostly responsible for the rapid O-methylation of catechol estrogens in blood. The methylation of a simple catechol compound, 1,2-dihydroxybenzene (pyrocatechol) was therefore studied using rat red blood cell lysates. Methylation was inhibited in a concentration-related manner by borate, as found in the studies of 2-OHE1. It is possible that high dietary intakes of boron or molybdenum could regulate the rate of catabolism, or even the metabolic fate of the major estrogens.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验