Suppr超能文献

Cloning, overexpression and mechanistic studies of carboxyphosphonoenolpyruvate mutase from Streptomyces hygroscopicus.

作者信息

Pollack S J, Freeman S, Pompliano D L, Knowles J R

机构信息

Department of Chemistry, Harvard University, Cambridge, Massachusetts.

出版信息

Eur J Biochem. 1992 Oct 15;209(2):735-43. doi: 10.1111/j.1432-1033.1992.tb17342.x.

Abstract

The enzyme carboxyphosphonoenolpyruvate mutase catalyses the formation of one of the two C-P bonds in bialaphos, a potent herbicide isolated from Streptomyces hygroscopicus. The gene encoding the enzyme has been cloned from a subgenomic library from S. hygroscopicus by colony hybridisation using an exact nucleotide probe. An open reading frame has been identified that encodes a protein of molecular mass 32700 Da, in good agreement with the subunit molecular mass of the carboxyphosphonoenolpyruvate mutase recently isolated from this source [Hidaka, T., Imai, S., Hara, O., Anzai, H., Murakami, T., Nagaoka, K. & Seto, H. (1990) J. Bacteriol. 172, 3066-3072]. The gene shares significant sequence similarity with that of phosphoenolpyruvate mutase, an enzyme that catalyses the related interconversion of phosphoenolpyruvate and phosphonopyruvate. When the carboxyphosphonoenolpyruvate-mutase gene was subcloned into the vector pET11a, the mutase was expressed as about 20% of the total soluble cellular protein in Escherichia coli. The mutase has been purified to homogeneity in three steps in 40% yield. With malate dehydrogenase/NADH, (hydroxyphosphinyl)pyruvate gives (hydroxyphosphinyl)lactate (kcat 164 s-1 and Km 680 microM) and this spectrophotometric assay for the product of the mutase reaction has been employed in the mechanistic studies. The kinetics for the mutase reaction have been evaluated for the substrate, carboxyphosphonoenolpyruvate, and for the putative reaction intermediate carboxyphosphinopyruvate, both of which have been prepared by chemical synthesis. Carboxyphosphonoenolpyruvate is converted to (hydroxyphosphinyl)pyruvate with a kcat of 0.020 s-1 and a Km of 270 microM, and carboxyphosphinopyruvate is converted to (hydroxyphosphinyl)pyruvate with a kcat of 7.6 x 10(-4) s-1 and a Km of 2.2 microM. Although the exogenously added intermediate is not kinetically competent, these results suggest that the mechanism for the mutase reaction involves an initial rearrangement to the intermediate carboxyphosphinopyruvate, followed by decarboxylation to yield the product (hydroxyphosphinyl)pyruvate.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验