Suppr超能文献

Transport protons do not participate in ATP synthesis/hydrolysis at the nucleotide binding site of the H(+)-ATPase from chloroplasts.

作者信息

Labahn A, Gräber P

机构信息

Biologisches Institut, Universität Stuttgart, Germany.

出版信息

FEBS Lett. 1992 Nov 23;313(2):177-80. doi: 10.1016/0014-5793(92)81439-s.

Abstract

The H(+)-ATPase from chloroplasts CFoF1, was brought into the active, reduced state by illumination of thylakoids in the presence of thioredoxin and dithiothreitol. Uni-site ATP synthesis was initiated by the addition of 20 nM [alpha-32P]ADP, and enzyme-bound and free nucleotides were separated by a pressure column. The ratio of enzyme-bound ADP to ATP was 0.55 +/- 0.05. In a second experiment, uni-site ATP hydrolysis under energized conditions was initiated by the addition of 36 nM [alpha-32P]ATP; enzyme-bound and free nucleotides were separated by a pressure column. Both procedures were carried out under continuous illumination. The ratio of enzyme-bound ADP to ATP was 0.46 +/- 0.04. In a third experiment, uni-site ATP hydrolysis under de-energized conditions was initiated by the addition of 39 nM [alpha-32P]ATP and NH4Cl/valinomycin in the absence of illumination. Free and enzyme-bound nucleotides were separated also by a pressure column. The ratio of enzyme-bound ADP to ATP was 0.43 +/- 0.02. This ratio was always the same irrespective of whether the reaction runs in the synthesis or the hydrolysis direction. Furthermore, the ratio does not depend on the membrane energization. We conclude, therefore, that the protons are not directly involved in the reaction at the catalytic site.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验