Buck E, Zimanyi I, Abramson J J, Pessah I N
Department of Veterinary Pharmacology and Toxicology, University of California, Davis 95616.
J Biol Chem. 1992 Nov 25;267(33):23560-7.
Nanomolar to micromolar ryanodine alters the gating kinetics of the Ca2+ release channel from skeletal sarcoplasmic reticulum (SR) fused with bilayer lipid membranes (BLM). In the presence of asymmetric CsCl and 100 microM CaCl2 cis, ryanodine (RY) (5-40 nM) activates the channel, increasing the open probability (po; maximum 300% of control) without changing unitary conductance (468 picosiemens (pS)). Statistical analyses of gating kinetics reveal that open and closed dwell times exhibit biexponential distributions and are significantly modified by nanomolar RY. Altered channel gating kinetics with low nanomolar RY is fully reversible and correlates well with binding kinetics of nanomolar [3H]RY with its high affinity site (Kd1 = 0.7 nM) under identical experimental conditions. RY (20-50 nM) induces occasional 1/2 conductance fluctuations which correlate with [3H]RY binding to a second site having lower affinity (Kd2 = 23 nM). RY (5-50 nM) in the presence of 500 mM CsCl significantly enhances Ca(2+)-induced Ca2+ release from actively loaded SR vesicles. Ryanodine > or = 50 nM stabilizes the channel in a 234-pS subconductance which is not readily reversible. RY (> or = 70 microM) produces a unidirectional transition from the 1/2 to a 1/4 conductance fluctuation, whereas RY > or = 200 microM causes complete closure of the channel. The RY required for stabilizing 1/4 conductance transitions and channel closure do not quantitatively correlate with [3H]RY equilibrium binding constants and is attributed to significant reduction in association kinetics with > 200 nM [3H]RY in the presence of 500 mM CsCl. These results demonstrate that RY stabilizes four discrete states of the SR release channel and supports the existence of multiple interacting RY effector sites on the channel protein.
纳摩尔至微摩尔浓度的ryanodine可改变与双层脂质膜(BLM)融合的骨骼肌肌浆网(SR)中Ca2+释放通道的门控动力学。在存在不对称CsCl和顺式100微摩尔CaCl2的情况下,ryanodine(RY)(5 - 40纳摩尔)激活通道,增加开放概率(po;最大为对照的300%),而不改变单通道电导(468皮西门子(pS))。门控动力学的统计分析表明,开放和关闭驻留时间呈现双指数分布,并被纳摩尔浓度的RY显著改变。低纳摩尔浓度的RY引起的通道门控动力学改变是完全可逆的,并且在相同实验条件下与纳摩尔浓度的[3H]RY与其高亲和力位点(Kd1 = 0.7纳摩尔)的结合动力学密切相关。RY(20 - 50纳摩尔)偶尔会诱导1/2电导波动,这与[3H]RY与具有较低亲和力的第二个位点(Kd2 = 23纳摩尔)的结合相关。在500毫摩尔CsCl存在下,5 - 50纳摩尔的RY显著增强了从主动加载的SR囊泡中Ca(2+)诱导的Ca2+释放。ryanodine≥50纳摩尔可使通道稳定在234 - pS的亚电导状态,且不易逆转。RY(≥70微摩尔)会产生从1/2到1/4电导波动的单向转变,而RY≥200微摩尔会导致通道完全关闭。稳定1/4电导转变和通道关闭所需的RY与[3H]RY平衡结合常数没有定量相关性,这归因于在500毫摩尔CsCl存在下,>200纳摩尔[3H]RY的结合动力学显著降低。这些结果表明,RY可稳定SR释放通道的四种离散状态,并支持通道蛋白上存在多个相互作用的RY效应位点。