Suppr超能文献

Phosphoinositide and calcium signalling responses in smooth muscle cells: comparison between lipoproteins, Ang II, and PDGF.

作者信息

Bochkov V, Tkachuk V, Buhler F, Resink T

机构信息

Department of Research, Basel University Hospital, Switzerland.

出版信息

Biochem Biophys Res Commun. 1992 Nov 16;188(3):1295-304. doi: 10.1016/0006-291x(92)91372-w.

Abstract

The effects of low density lipoprotein (LDL) and high density lipoprotein (HDL3) on second messenger systems were investigated in cultured human vascular smooth muscle cells (VSMC) and compared with those of angiotensin II (Ang II) and platelet-derived growth factor (PDGF-BB). Phosphoinositide metabolism was studied in myo-[2-3H]-inositol prelabelled VSMC using high performance liquid anion-exchange chromatography. The spectra of inositol phosphate isomers increased after stimulation with either Ang II, LDL, HDL3 or PDGF-BB were qualitatively identical. Major increases occurred in 4-IP1, 1,4-IP2, 1,3,4-IP3 and 1,3,4,5-IP4. These are metabolic conversion products of 1,4,5-IP3 for which only a minor increase was found. Thus lipoproteins, like Ang II and PDGF-BB, activate polyphosphatidylinositol-specific phospholipase C. Intracellular Ca2+ concentrations ([Ca2+]i) were studied in fura-2 loaded VSMC. In monolayer cultures LDL and HDL3 increased [Ca2+]i with kinetics comparable to those for Ang II. Relative to the effects of these agonists, the PDGF-BB-induced increase in [Ca2+]i was slower in onset and the decay from peak [Ca2+]i levels more gradual. Fluorescence recordings from single cells exposed to LDL and HDL3 revealed a prolonged series of transient oscillations of [Ca2+]i, a phenomenon typical for calcium-mobilizing hormones. Additionally, as found for Ang II, preincubation of VSMC with either phorbol 12-myristate, 13-acetate, forskolin or 8-bromo-cyclic GMP inhibited LDL- and HDL-induced accumulation of [3H]-inositol monophosphate. We propose that LDL and HDL3 stimulate signal transduction in VSMC via mechanisms analogous to those of Ca(2+)-mobilizing hormones.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验