Felix J P, King V F, Shevell J L, Garcia M L, Kaczorowski G J, Bick I R, Slaughter R S
Department of Membrane Biochemistry and Biophysics, Merck Research Laboratories, Rahway, New Jersey 07065-0900.
Biochemistry. 1992 Dec 1;31(47):11793-800. doi: 10.1021/bi00162a017.
Bis(benzylisoquinoline) alkaloids block Ca2+ uptake through the L-type Ca2+ channel and modulate binding of ligands to four distinct sites (dihydropyridine, benzothiazepine, aralkylamine, and (diphenylbutyl)piperidine) in the Ca2+ entry blocker receptor complex of the channel. These alkaloids are structural analogs of tetrandrine, which has previously been demonstrated to block the L-type Ca2+ channel through interaction at the benzothiazepine (diltiazem) site (King et al., 1988). Different alkaloid conformational classes display either alpha-beta, beta-alpha, alpha-alpha, or beta-beta stereochemistry at the two chiral isoquinoline carbons. Compounds from all four classes were tested for their ability to interact with Ca2+ entry blocker ligands. All analogs completely inhibit diltiazem binding, but many only partially inhibit D-600 and fluspirilene binding. For dihydropyridine binding, the compounds show either stimulation or inhibition or exhibit no effect. This profile is quite different from the interaction displayed by diltiazem or tetrandrine. Scatchard analyses show effects predominantly on Kd for diltiazem, D-600, and PN200-110 binding. Representative conformers do not effect diltiazem dissociation rates but alter dissociation kinetics of ligands which bind to the other three sites. A correlation of the ability of these compounds to inhibit Ca2+ uptake through the L-type Ca2+ channel in GH3 cells exists only with their inhibition of diltiazem binding but not with inhibition of binding of ligands representing other classes of Ca2+ entry blockers. These data, taken together, indicate that a variety of bis(benzylisoquinoline) congeners act to block the L-type Ca2+ channel by binding to the benzothiazepine site on the channel.(ABSTRACT TRUNCATED AT 250 WORDS)
双(苄基异喹啉)生物碱可通过L型钙通道阻断Ca2+内流,并调节配体与该通道Ca2+ 进入阻滞剂受体复合物中四个不同位点(二氢吡啶、苯并噻氮䓬、芳烷基胺和(二苯基丁基)哌啶)的结合。这些生物碱是汉防己甲素的结构类似物,此前已证明汉防己甲素可通过与苯并噻氮䓬(地尔硫䓬)位点相互作用来阻断L型钙通道(King等人,1988年)。不同的生物碱构象类别在两个手性异喹啉碳上呈现α-β、β-α、α-α或β-β立体化学结构。对来自所有四类的化合物进行了与Ca2+ 进入阻滞剂配体相互作用能力的测试。所有类似物均完全抑制地尔硫䓬结合,但许多仅部分抑制D - 600和氟司必林结合。对于二氢吡啶结合,这些化合物表现出刺激、抑制或无作用。这种情况与地尔硫䓬或汉防己甲素所表现出的相互作用截然不同。Scatchard分析表明,其主要影响地尔硫䓬、D - 600和PN200 - 110结合的解离常数(Kd)。代表性构象异构体不影响地尔硫䓬的解离速率,但会改变与其他三个位点结合的配体的解离动力学。这些化合物抑制GH3细胞中通过L型钙通道的Ca2+ 内流的能力,仅与其对地尔硫䓬结合的抑制相关,而与对代表其他类Ca2+ 进入阻滞剂的配体结合的抑制无关。综合这些数据表明,多种双(苄基异喹啉)同系物通过与通道上的苯并噻氮䓬位点结合来阻断L型钙通道。(摘要截断于250字)