Arshavsky V Y, Dumke C L, Bownds M D
Laboratory of Molecular Biology, University of Wisconsin, Madison 53706.
J Biol Chem. 1992 Dec 5;267(34):24501-7.
The cGMP phosphodiesterase (PDE) of retinal rods plays a central role in phototransduction. Illumination leads to its activation by a rod G-protein (Gt, transducin), thus causing a decrease in intracellular cGMP concentration, closure of plasma membrane cationic channels gated by cGMP, and development of the photoresponse. The PDE holoenzyme is an alpha beta gamma 2 tetramer. The alpha- and beta-subunits each contain one catalytic and one, or possibly two, noncatalytic cGMP-binding sites. Two identical gamma-subunits serve as protein inhibitors of the enzyme. Their inhibition is removed when they bind to Gt-GTP during PDE activation. Here we report that the noncatalytic cGMP-binding sites regulate the binding of PDE alpha beta with PDE gamma and as a result determine the mechanism of PDE activation by Gt. If the noncatalytic sites are empty, Gt-GTP physically removes PDE gamma from PDE alpha beta upon activation. Alternatively, if the noncatalytic sites are occupied by cGMP, Gt-GTP releases PDE gamma inhibitory action but remains bound in a complex with the PDE heterotetramer. The kinetic parameters of activated PDE in these two cases are indistinguishable. This mechanism appears to have two implications for the physiology of photoreceptor cells. First, the tight binding of PDE gamma with PDE alpha beta when the noncatalytic sites are occupied by cGMP may be responsible for the low level of basal PDE activity observed in dark-adapted cells. Second, occupancy of the noncatalytic sites ultimately controls the rate of PDE inactivation (cf. Arshavsky, V. Yu., and Bownds, M. D. (1992) Nature 357, 416-417), for the GTPase activity that terminates PDE activity is slower when these sites are occupied and Gt stays in a complex with PDE holoenzyme. In contrast GTPase acceleration is maximal when the noncatalytic sites are empty and Gt-PDE gamma dissociates from PDE alpha beta. Because cGMP levels are known to decrease upon illumination over a concentration range corresponding to the binding constants of the noncatalytic sites, the binding might be involved in determining the lifetime of activated PDE, after a single flash and/or during dark adaptation.
视网膜视杆细胞中的环磷酸鸟苷(cGMP)磷酸二酯酶(PDE)在光转导过程中起核心作用。光照会导致其被视杆细胞G蛋白(Gt,转导蛋白)激活,从而使细胞内环磷酸鸟苷浓度降低,由环磷酸鸟苷门控的质膜阳离子通道关闭,并产生光反应。PDE全酶是一种αβγ₂四聚体。α亚基和β亚基各自包含一个催化性和一个或可能两个非催化性环磷酸鸟苷结合位点。两个相同的γ亚基作为该酶的蛋白质抑制剂。在PDE激活过程中,当它们与Gt - GTP结合时,其抑制作用被消除。在此我们报告,非催化性环磷酸鸟苷结合位点调节PDEαβ与PDEγ的结合,从而决定了Gt对PDE的激活机制。如果非催化性位点为空,激活时Gt - GTP会将PDEγ从PDEαβ上物理性移除。或者,如果非催化性位点被环磷酸鸟苷占据,Gt - GTP会释放PDEγ的抑制作用,但仍与PDE异源四聚体结合形成复合物。在这两种情况下,激活的PDE的动力学参数没有差异。这种机制似乎对光感受器细胞的生理学有两个影响。首先,当非催化性位点被环磷酸鸟苷占据时,PDEγ与PDEαβ紧密结合可能是暗适应细胞中观察到的基础PDE活性水平较低的原因。其次,非催化性位点的占据最终控制PDE失活的速率(参见Arshavsky, V. Yu., and Bownds, M. D. (1992) Nature 357, 416 - 417),因为当这些位点被占据且Gt与PDE全酶保持复合物状态时,终止PDE活性的GTP酶活性较慢。相反,当非催化性位点为空且Gt - PDEγ与PDEαβ解离时,GTP酶加速作用最大。由于已知光照后环磷酸鸟苷水平会在对应于非催化性位点结合常数的浓度范围内降低,这种结合可能参与决定单次闪光后和/或暗适应期间激活的PDE的寿命。