Duch D S, Hernandez A, Levinson S R, Urban B W
Department of Anesthesiology, Cornell University Medical College, New York 10021.
J Gen Physiol. 1992 Oct;100(4):623-45. doi: 10.1085/jgp.100.4.623.
To probe the structure-function relationships of voltage-dependent sodium channels, we have been examining the mechanisms of channel modification by batrachotoxin (BTX), veratridine (VTD), and grayanotoxin-I (GTX), investigating the unifying mechanisms that underlie the diverse modifications of this class of neurotoxins. In this paper, highly purified sodium channel polypeptides from the electric organ of the electric eel were incorporated into planar lipid bilayers in the presence of GTX for comparison with our previous studies of BTX (Recio-Pinto, E., D. S. Duch, S. R. Levinson, and B. W. Urban. 1987. J. Gen. Physiol. 90:375-395) and VTD (Duch, D. S., E. Recio-Pinto, C. Frenkel, S. R. Levinson, and B. W. Urban. 1989. J. Gen. Physiol. 94:813-831) modifications. GTX-modified channels had a single channel conductance of 16 pS. An additional large GTX-modified open state (40-55 pS) was found which occurred in bursts correlated with channel openings and closings. Two voltage-dependent processes controlling the open time of these modified channels were characterized: (a) a concentration-dependent removal of inactivation analogous to VTD-modified channels, and (b) activation gating similar to BTX-modified channels, but occurring at more hyperpolarized potentials. The voltage dependence of removal of inactivation correlated with parallel voltage-dependent changes in the estimated K1/2 of VTD and GTX modifications. Ranking either the single channel conductances or the depolarization required for 50% activation, the same sequence is obtained: unmodified > BTX > GTX > VTD. The efficacy of the toxins as activators follows the same ranking (Catterall, W. A. 1977. J. Biol. Chem. 252:8669-8676).
为了探究电压依赖性钠通道的结构-功能关系,我们一直在研究蛙毒素(BTX)、藜芦碱(VTD)和灰侧耳毒素-I(GTX)对通道的修饰机制,探讨这类神经毒素多种修饰作用背后的统一机制。在本文中,将来自电鳗电器官的高度纯化的钠通道多肽在GTX存在的情况下整合到平面脂质双分子层中,以便与我们之前对BTX(雷西奥-平托,E.,D. S. 杜奇,S. R. 莱文森,和B. W. 厄本。1987. 《普通生理学杂志》90:375 - 395)和VTD(杜奇,D. S.,E. 雷西奥-平托,C. 弗伦克尔,S. R. 莱文森,和B. W. 厄本。1989. 《普通生理学杂志》94:813 - 831)修饰的研究进行比较。GTX修饰的通道单通道电导为16 pS。还发现了另一种大的GTX修饰开放状态(40 - 55 pS),它以与通道开放和关闭相关的爆发形式出现。表征了控制这些修饰通道开放时间的两个电压依赖性过程:(a)类似于VTD修饰通道的浓度依赖性失活去除,以及(b)类似于BTX修饰通道的激活门控,但发生在更正极的电位。失活去除的电压依赖性与VTD和GTX修饰的估计K1/2中平行的电压依赖性变化相关。对单通道电导或50%激活所需去极化进行排序,得到相同的顺序:未修饰的 > BTX > GTX > VTD。毒素作为激活剂的效力遵循相同的排序(卡特拉尔,W. A. 1977. 《生物化学杂志》252:8669 - 8676)。