Suppr超能文献

Changes in mitochondrial and microsomal 3 beta-hydroxysteroid dehydrogenase activity in mouse ovary over the course of the estrous cycle.

作者信息

Chapman J C, Waterhouse T B, Michael S D

机构信息

Department of Biological Sciences, State University of New York, Binghamton 13902-6000.

出版信息

Biol Reprod. 1992 Dec;47(6):992-7. doi: 10.1095/biolreprod47.6.992.

Abstract

3 beta-Hydroxysteroid dehydrogenase (HSD) is located in the endoplasmic reticulum and mitochondria. To determine whether the separate enzymes play different roles in steroidogenesis, the specific activity (SA) of both were measured at four different stages of the mouse estrous cycle. Microsomal HSD activity changed little throughout, averaging 8.7 +/- 0.7 nmol progesterone/min/mg protein. In contrast, mitochondrial HSD activity changed dramatically at diestrus, increasing to 14.4 nmol progesterone/min/mg protein. When measured at proestrus, estrus, and metestrus, mitochondrial HSD activity was 5.5, 7.4, and 4.5 nmol progesterone/min/mg protein, respectively. To ascertain whether the increase in mitochondrial HSD activity at diestrus could be due to a preferential induction of enzyme, its SA and the SA of a mitochondrial inner membrane enzyme, cytochrome C oxidase, were compared to the SA of a mitochondrial outer membrane enzyme, rotenone-insensitive NADH cytochrome C reductase. The SA of all three enzymes changed proportionally at diestrus, suggesting that the increase in mitochondrial HSD activity was not due to its preferential induction. Rather, we believe that the HSD activity in the mitochondrial fraction, as measured at the four stages of the estrous cycle, is a reflection of the combined contributions from an ever changing population of ovarian cells. Mitochondria from luteal cells have the highest HSD activity, and are very likely responsible for the major synthesis of progesterone during the luteal phase.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验