Ritter J K, Chen F, Sheen Y Y, Tran H M, Kimura S, Yeatman M T, Owens I S
Human Genetics Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.
J Biol Chem. 1992 Feb 15;267(5):3257-61.
Two human liver UDP-glucuronosyltransferase (transferase) cDNAs, HUG-Br1 and HUG-Br2, were previously isolated (Ritter, J. K., Crawford, J. M., and Owens, I. S. (1991) J. Biol. Chem. 266, 1043-1047), and each was shown to encode a bilirubin transferase isozyme which catalyzes the formation of all physiological conjugates of bilirubin IX alpha following expression in COS-1 cells. Sequence data showed that the cDNAs contained identical 3' ends (1469 base pairs in length) to each other and to that of the human phenol transferase cDNA, HLUG P1 (Harding, D., Fournel-Gigleux, S., Jackson, M. R., and Burchell, B. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 8381-8385). Here we report that the two corresponding bilirubin transferases and the phenol transferase are encoded by a novel locus, UGT1, which is also predicted to encode three other bilirubin transferase-like isozymes all having identical carboxyl termini. The transcriptional arrangement utilizes six nested promoter elements, each of which is positioned upstream of a unique exon 1. Each exon 1 encodes the NH2-terminal domain (286 amino acids) and confers the substrate specificity of the isoform. The 3' end of the locus contains 4 common exons which encode the identical carboxyl termini (246 amino acids). It is predicted that six nested primary transcripts are synthesized and that each exon 1 is differentially spliced to the 4 common exons to produce six unique, mature mRNAs. Although the gene organization is present as a single copy, it provides the flexibility of independent regulation of each isoform which is known to occur in the case of bilirubin and phenol transferase activities. With an understanding of the gene structure, lethal, as well as the nonlethal defects, associated with bilirubin transferase activity can now be determined.
先前已分离出两个人类肝脏UDP - 葡糖醛酸基转移酶(转移酶)cDNA,即HUG - Br1和HUG - Br2(里特,J.K.,克劳福德,J.M.,以及欧文斯,I.S.(1991年)《生物化学杂志》266卷,1043 - 1047页),并且已证明每个cDNA都编码一种胆红素转移酶同工酶,该同工酶在COS - 1细胞中表达后催化胆红素IXα的所有生理性结合物的形成。序列数据表明,这些cDNA彼此之间以及与人类酚转移酶cDNA,即HLUG P1(哈丁,D.,富尔内尔 - 吉格勒,S.,杰克逊,M.R.,以及伯切尔,B.(1988年)《美国国家科学院院刊》85卷,8381 - 8385页)的3'端相同(长度为1469个碱基对)。在此我们报告,两种相应的胆红素转移酶和酚转移酶由一个新的基因座UGT1编码,该基因座预计还编码另外三种胆红素转移酶样同工酶,它们都具有相同的羧基末端。转录排列利用六个嵌套的启动子元件,每个元件都位于一个独特的外显子1的上游。每个外显子1编码NH2末端结构域(286个氨基酸)并赋予同工型的底物特异性。该基因座的3'端包含4个共同外显子,它们编码相同的羧基末端(246个氨基酸)。预计会合成六个嵌套的初级转录本,并且每个外显子1会以差异方式剪接到4个共同外显子上,以产生六个独特的成熟mRNA。尽管基因结构以单拷贝形式存在,但它提供了对每个同工型进行独立调控的灵活性,已知在胆红素和酚转移酶活性的情况下会发生这种调控。随着对基因结构的了解,现在可以确定与胆红素转移酶活性相关的致死性以及非致死性缺陷。