Engstrand C, Forsman C, Liang Z, Lindskog S
Avdelningen för Biokemi, Umeå Universitet, Sweden.
Biochim Biophys Acta. 1992 Aug 21;1122(3):321-6. doi: 10.1016/0167-4838(92)90412-7.
The CO2 hydration activities of cloned human carbonic anhydrase II (carbonate hydro-lyase, EC 4.2.1.1) and variants with Lys, Glu, Gln or Ala replacing His at sequence position 64 have been measured in a variety of different buffers in the pH range 6-9. The variants with Lys-64, Gln-64 and Ala-64 showed non-Michaelis-Menten behavior under some conditions, apparent substrate inhibition being prominent near pH 9. However, asymptotic Michaelis-Menten parameters could be estimated for the limit of low substrate concentrations. All variants show distinct buffer specificities, and imidazole derivatives, Ches and phosphate buffers yield higher kcat values that Bicine, Taps and Mops buffers under otherwise similar conditions. These results are interpreted in terms of different pathways for a rate-limiting proton transfer. In unmodified enzyme, the very high catalytic activity depends on His-64 functioning as an efficient proton transfer group, but this pathway is not available in the variants with Gln-64 and Ala-64. Imidazoles, Ches and phosphate are thought to participate in a metal center-to-buffer proton transfer pathway, whereas Bicine, Taps, Mops and Mes appear to lack this capacity, so that the rate-limiting proton transfer occurs in a metal center-to-bulk water pathway for these variants. The Lys-64 and Glu-64 variants give significantly higher kcat values in Taps, Mops and Mes buffers than the Ala-64 and Gln-64 variants. The pH dependencies of these kcat values are compatible with the hypothesis that Lys-64 and Glu-64 can function as proton transfer groups. Thus, at pH near 9, Lys-64 appears to be only 5-times less efficient than His-64, while Glu-64 is inefficient. At pH 6, Lys-64 is an inefficient proton transfer group, but Glu-64 is only 2-3-times less efficient than His-64. The data indicate that Lys-64 and Glu-64 have pKa values near 8 and below 6, respectively.
已在pH值6 - 9范围内的多种不同缓冲液中测定了克隆的人碳酸酐酶II(碳酸水解酶,EC 4.2.1.1)以及在序列位置64处用赖氨酸、谷氨酸、谷氨酰胺或丙氨酸取代组氨酸的变体的二氧化碳水合活性。具有64位赖氨酸、64位谷氨酰胺和64位丙氨酸的变体在某些条件下表现出非米氏动力学行为,在pH值接近9时明显的底物抑制作用较为突出。然而,对于低底物浓度极限,可以估计出渐近的米氏动力学参数。所有变体都表现出明显的缓冲液特异性,在其他条件相似的情况下,咪唑衍生物、Ches和磷酸盐缓冲液产生的kcat值高于Bicine、Taps和Mops缓冲液。这些结果根据限速质子转移的不同途径进行了解释。在未修饰的酶中,非常高的催化活性取决于64位组氨酸作为高效质子转移基团的功能,但在具有64位谷氨酰胺和64位丙氨酸的变体中,这条途径不可用。咪唑、Ches和磷酸盐被认为参与了从金属中心到缓冲液的质子转移途径,而Bicine、Taps、Mops和Mes似乎缺乏这种能力,因此对于这些变体,限速质子转移发生在从金属中心到大量水的途径中。64位赖氨酸和64位谷氨酸变体在Taps、Mops和Mes缓冲液中的kcat值明显高于64位丙氨酸和64位谷氨酰胺变体。这些kcat值的pH依赖性与64位赖氨酸和64位谷氨酸可以作为质子转移基团的假设相符。因此,在pH值接近9时,64位赖氨酸的效率似乎仅比64位组氨酸低5倍,而64位谷氨酸效率较低。在pH值6时,64位赖氨酸是低效的质子转移基团,但64位谷氨酸的效率仅比64位组氨酸低2 - 3倍。数据表明,64位赖氨酸和64位谷氨酸的pKa值分别接近8和低于6。