Hatakeyama K, Harada T, Kagamiyama H
Department of Medical Chemistry, Osaka Medical College, Japan.
J Biol Chem. 1992 Oct 15;267(29):20734-9.
GTP cyclohydrolase I exhibits a positive homotropic cooperative binding to GTP, which raises the possibility of a role for GTP in regulating the enzyme reaction (Hatakeyama, K., Harada, T., Suzuki, S., Watanabe, Y., and Kagamiyama, H. (1989) J. Biol. Chem. 264, 21660-21664). We examined whether or not the intracellular GTP level is within the range of affecting GTP cyclohydrolase I activity, using PC-12 rat pheochromocytoma and IMR-32 human neuroblastoma cells. Since GTP cyclohydrolase I was the rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin in these cell lines, the intracellular activities of this enzyme were reflected in the tetrahydrobiopterin contents. We found that the addition of guanine or guanosine increased GTP but not tetrahydrobiopterin in these cells. On the other hand, three IMP dehydrogenase inhibitors, tiazofurin, 2-amino-1,3,4-thiadiazole, and mycophenolic acid, decreased both GTP and tetrahydrobiopterin in a parallel and dose-dependent manner, and these effects were reversed by the simultaneous addition of guanine or guanosine. There was no evidence suggesting that these inhibitors inhibited other enzymes involved in the biosynthesis and regeneration of tetrahydrobiopterin. Comparing intracellular activities of GTP cyclohydrolase I in the inhibitor-treated cells with its substrate-velocity curve, we estimated that the intracellular concentration of free GTP is 150 microM at which point the activity of GTP cyclohydrolase I is elicited at its maximum velocity. Below this GTP concentration, GTP cyclohydrolase I activity is rapidly decreased. Therefore GTP can be a regulator for tetrahydrobiopterin biosynthesis.
GTP环化水解酶I对GTP表现出正向同促协同结合,这增加了GTP在调节酶反应中发挥作用的可能性(Hatakeyama, K., Harada, T., Suzuki, S., Watanabe, Y., and Kagamiyama, H. (1989) J. Biol. Chem. 264, 21660 - 21664)。我们使用PC - 12大鼠嗜铬细胞瘤细胞和IMR - 32人神经母细胞瘤细胞,研究了细胞内GTP水平是否在影响GTP环化水解酶I活性的范围内。由于GTP环化水解酶I是这些细胞系中四氢生物蝶呤生物合成的限速酶,该酶的细胞内活性反映在四氢生物蝶呤含量中。我们发现,在这些细胞中添加鸟嘌呤或鸟苷会增加GTP,但不会增加四氢生物蝶呤。另一方面,三种肌苷酸脱氢酶抑制剂,噻唑呋林、2 - 氨基 - 1,3,4 - 噻二唑和霉酚酸,以平行且剂量依赖的方式降低GTP和四氢生物蝶呤,同时添加鸟嘌呤或鸟苷可逆转这些作用。没有证据表明这些抑制剂抑制了参与四氢生物蝶呤生物合成和再生的其他酶。将抑制剂处理细胞中GTP环化水解酶I的细胞内活性与其底物 - 速度曲线进行比较,我们估计游离GTP的细胞内浓度为150微摩尔,此时GTP环化水解酶I的活性以最大速度被激发。低于此GTP浓度,GTP环化水解酶I的活性迅速下降。因此,GTP可以作为四氢生物蝶呤生物合成的调节剂。