Ward O P, Young C S
Department of Biology, University of Waterloo, Ontario, Canada.
Enzyme Microb Technol. 1990 Jul;12(7):482-93. doi: 10.1016/0141-0229(90)90063-v.
Saccharomyces cerevisiae catalyses the asymmetric reductive biotransformation of a variety of compounds containing a carbonyl group or carbon-carbon double bond. Oxidoreductases participating in these reactions which have commercial potential in biotransformation processes are likely to have relatively broad substrate specificity. Important carbonyl reductases falling into this category include YADH- and yeast NADP-dependent beta-ketoester reductases. The enoyl reductase component of the FAS complex may have a role in asymmetric yeast reduction of carbon-carbon double bonds of unnatural substrates. Other nicotinamide-requiring oxidoreductases of yeast are also surveyed to rationalize observed biotransformations of whole yeast cells in terms of specific enzymes. Genetic and protein engineering may enable enzymes to be tailored to accept new substrates. A greater understanding of the enzymes and reactions involved will facilitate further optimization and exploitation of these catalytic systems in industrial processes.
酿酒酵母催化多种含有羰基或碳 - 碳双键的化合物的不对称还原生物转化。参与这些反应的氧化还原酶在生物转化过程中具有商业潜力,可能具有相对较宽的底物特异性。属于这一类别的重要羰基还原酶包括酵母乙醇脱氢酶(YADH)和酵母烟酰胺腺嘌呤二核苷酸磷酸(NADP)依赖性β - 酮酯还原酶。脂肪酸合成酶(FAS)复合物的烯酰还原酶成分可能在酵母对非天然底物的碳 - 碳双键的不对称还原中起作用。还对酵母的其他需要烟酰胺的氧化还原酶进行了研究,以便根据特定酶来解释观察到的全酵母细胞的生物转化。基因工程和蛋白质工程可以使酶经过改造以接受新的底物。对所涉及的酶和反应有更深入的了解将有助于在工业过程中进一步优化和利用这些催化系统。