Suppr超能文献

Immobilization of genetically engineered cells: a new strategy for higher stability.

作者信息

Kumar P K, Schügerl K

机构信息

Institut für Technische Chemie, University of Hannover, F.R.G.

出版信息

J Biotechnol. 1990 Jun;14(3-4):255-72. doi: 10.1016/0168-1656(90)90111-n.

Abstract

The r-DNA clones improve the bioprocess and provide better economics, if and when properly developed. In recent times, many approaches were made to improve the stability of recombinants in a reactor which includes both genetic and environmental methods, but many of them were proved to be unsuccessful in the scale-up process. The immobilization technique, exploited recently for the cultivation of recombinants, in many cases gave high cell concentrations, better expression of cloned gene products and also maintained plasmid stability for longer periods in a host under continuous operation in comparison to a free cell system. Many plasmids and hosts were tested for improved stabilities. So far, no explanation was provided for higher stability in the immobilized system. However, it was observed to reduce the competition between the plasmid harboring and plasmid free cells in a matrix. The stability of recombinant strains under immobilization technique is affected by various factors, and these are important parameters for the commercial process. Thus, the immobilization system is promising for the successful cultivation and scale-up of genetically engineered cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验