Creighton S, Huang M M, Cai H, Arnheim N, Goodman M F
Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340.
J Biol Chem. 1992 Feb 5;267(4):2633-9.
We investigate the enzymatic basis for the inefficient extension of single base mismatches by DNA polymerase compared with the extension of correct base pairs. Inefficient mismatch extension could result from either a reduced binding of the enzyme to mispaired versus correctly paired DNA template-primer termini, or from a lowered intrinsic rate of extension of mispairs by a bound enzyme, or from a combination of both factors. Avian myeloblastosis reverse transcriptase is used to measure the affinities (equilibrium dissociation constants) for the four matched and twelve mismatched base pair configurations situated at a primer 3'-terminus. The binding affinities are analyzed by two different assays employing polyacrylamide gels. The first assay uses steady-state kinetics to measure the efficiency of elongating correct and incorrect base pairs and to evaluate the enzyme's dissociation constants for matched and mismatched termini. The estimated KD values obtained in the steady-state analysis fall within a range of approximately 0.1-20 nM. The efficiencies of extending two of the mispairs, G.G and C.C, are too low to allow a determination of KD by the kinetics method. The second assay uses equilibrium binding to measure the ratio of polymerase bound to matched compared with mismatched termini, KDright/KDwrong. The affinity ratios, including values for G.G and C.C mispairs, are in the range of about 0.4-4.2. While around 1 order of magnitude difference is observed in the relative binding affinities of the polymerase for matched and mismatched primer termini, the relative extension efficiencies vary over more than 5 orders of magnitude. Therefore, it appears that inefficient mismatch extension is caused primarily by a kinetic block inhibiting elongation from mispaired primer 3'-termini rather than to a difference in binding.
我们研究了与正确碱基对延伸相比,DNA聚合酶对单碱基错配延伸效率低下的酶学基础。错配延伸效率低下可能是由于酶与错配的DNA模板-引物末端相比,与正确配对的DNA模板-引物末端的结合减少,或者是由于结合的酶对错配延伸的内在速率降低,或者是这两种因素的组合。禽成髓细胞瘤逆转录酶用于测量位于引物3'-末端的四种匹配和十二种错配碱基对构型的亲和力(平衡解离常数)。通过两种使用聚丙烯酰胺凝胶的不同测定法分析结合亲和力。第一种测定法使用稳态动力学来测量延伸正确和不正确碱基对的效率,并评估酶对匹配和错配末端的解离常数。在稳态分析中获得的估计KD值落在约0.1-20 nM的范围内。延伸两种错配(G.G和C.C)的效率太低,无法通过动力学方法确定KD。第二种测定法使用平衡结合来测量与错配末端相比,与匹配末端结合的聚合酶的比例,KDright/KDwrong。亲和力比率,包括G.G和C.C错配的值,在约0.4-4.2的范围内。虽然在聚合酶对匹配和错配引物末端的相对结合亲和力中观察到约1个数量级的差异,但相对延伸效率变化超过5个数量级。因此,似乎错配延伸效率低下主要是由抑制错配引物3'-末端延伸的动力学障碍引起的,而不是由结合差异引起的。