Suppr超能文献

DNA解链热力学与DNA聚合酶保真度之间的比较。

Comparison between DNA melting thermodynamics and DNA polymerase fidelity.

作者信息

Petruska J, Goodman M F, Boosalis M S, Sowers L C, Cheong C, Tinoco I

机构信息

Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340.

出版信息

Proc Natl Acad Sci U S A. 1988 Sep;85(17):6252-6. doi: 10.1073/pnas.85.17.6252.

Abstract

The relation between DNA polymerase fidelity and base pairing stability is investigated by using DNA primer-template duplexes that contain a common 9-base template sequence but have either correct (A.T) or incorrect (G.T, C.T, T.T) base pairs at the primer 3' terminus. Thermal melting and enzyme kinetic measurements are compared for each kind of terminus. Analysis of melting temperatures finds that differences between the free energy changes upon dissociation (delta delta Go) are only 0.2, 0.3, and 0.4 kcal.mol-1 (1 cal = 4.18 J) for terminal A.T compared to G.T, C.T, and T.T mispairs, respectively, at 37 degrees C. We show that enthalpy changes are directly correlated with entropy changes for normal and abnormal base pairs in DNA in aqueous solution and that delta delta Go values are small because of near cancellation of corresponding enthalpy and entropy components. The kinetics of elongating primer termini are measured with purified Drosophila DNA polymerase alpha. The matched A.T terminus is found to be extended approximately 200 times faster than a G.T mismatch and 1400 and 2500 times faster than C.T and T.T mismatches, respectively. Enzymatic discrimination against elongating mismatched termini is based mainly on Km rather than Vmax differences. From Km at 37 degrees C, we find delta delta Go values of 2.6-3.7 kcal.mol-1, about an order of magnitude greater than indicated by melting data. A similar measurement of nucleotide insertion kinetics has previously found rates of forming A.T base pairs to be 500 times greater than G.T mispairs and 20,000 times greater than C.T and T.T mispairs. Here also, Km differences are mainly responsible for discrimination and indicate even larger delta delta Go values (4.3-4.9 kcal.mol-1). Thus, free energy differences between correct and incorrect base pairs in the active site cleft of polymerase appear to be greater than 10 times as large as in aqueous medium. We explore the idea that a binding cleft that snugly fits correct base pairs and excludes water at the active site may amplify base-pair free energy differences by reducing entropy differences and increasing enthalpy differences sufficiently to account for nucleotide insertion and extension fidelity.

摘要

通过使用DNA引物 - 模板双链体来研究DNA聚合酶保真度与碱基配对稳定性之间的关系,这些双链体包含一个共同的9碱基模板序列,但在引物3'末端具有正确的(A.T)或不正确的(G.T、C.T、T.T)碱基对。对每种末端进行热解链和酶动力学测量并进行比较。对解链温度的分析发现,在37℃时,与末端G.T、C.T和T.T错配相比,末端A.T解链时自由能变化的差异(ΔΔG°)分别仅为0.2、0.3和0.4千卡·摩尔⁻¹(1卡 = 4.18焦耳)。我们表明,在水溶液中,DNA中正常和异常碱基对的焓变与熵变直接相关,并且由于相应焓和熵成分几乎相互抵消,ΔΔG°值较小。用纯化的果蝇DNA聚合酶α测量引物末端延伸的动力学。发现匹配的A.T末端延伸速度比G.T错配快约200倍,比C.T和T.T错配分别快1400倍和2500倍。对延伸错配末端的酶促辨别主要基于Km而不是Vmax差异。根据37℃时的Km,我们发现ΔΔG°值为2.6 - 3.7千卡·摩尔⁻¹,比解链数据所示的值大约高一个数量级。先前对核苷酸插入动力学的类似测量发现,形成A.T碱基对的速率比G.T错配高500倍,比C.T和T.T错配高20,000倍。同样在此处,Km差异主要负责辨别,并且表明ΔΔG°值甚至更大(4.3 - 4.9千卡·摩尔⁻¹)。因此,聚合酶活性位点裂隙中正确和不正确碱基对之间的自由能差异似乎比在水性介质中大四倍以上。我们探讨了这样一种观点,即一个紧密适配正确碱基对并在活性位点排除水的结合裂隙,可能通过充分降低熵差异和增加焓差异来放大碱基对自由能差异,以解释核苷酸插入和延伸保真度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6f7/281947/a5af727692fc/pnas00296-0035-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验