Suppr超能文献

Modulation of DNA modification (I-compound) levels in rat liver and kidney by dietary carbohydrate, protein, fat, vitamin, and mineral content.

作者信息

Li D, Randerath K

机构信息

Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030.

出版信息

Mutat Res. 1992 Jan;275(1):47-56. doi: 10.1016/0921-8734(92)90008-d.

Abstract

I-compounds are DNA modifications detected by 32P-postlabeling that increase with age in rodents without known carcinogen exposure. Diet type (natural ingredient versus purified) greatly influences patterns and levels of I-compounds. To test the hypothesis that I-compound formation is affected, also, by dietary macro- and micronutrients, effects of carbohydrate, protein, fat, vitamin, and mineral content on rat liver and kidney I-compounds were determined. Female Sprague-Dawley rats were fed basic or modified AIN-76A purified diets for 3-6 months. High protein (HP) diet (50%, w/w) increased I-compound levels in liver but not kidney. High carbohydrate (HC) diet (78%) produced a significant increase in the polar as well as total I-compound levels in both tissues. High fat diets (20%) elicited significantly lower levels of liver I-compounds than HC, HP, and basic diets. There were few significant differences between high polyunsaturated (safflower oil) and saturated fat (lard) diet groups. No qualitative differences in I-compound profiles were observed in either tissue. In rats fed basic diet supplemented with vitamins and/or minerals, increased vitamin content reduced the levels of polar I-compounds in liver. No extra diet-induced adducts were observed; all effects were of a quantitative nature. These data provide direct evidence that nutrients significantly influence I-compound levels and support the hypothesis that normal metabolism of nutrients leads to the production of small amounts of DNA-reactive electrophiles. These observations suggest a novel mechanism where nutrient composition of the diet may play a role in development of neoplasia and other adverse health effects.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验