Suppr超能文献

钙调蛋白与肌球蛋白亚片段-1结合肌动蛋白的镶嵌多结合模型。

A mosaic multiple-binding model for the binding of caldesmon and myosin subfragment-1 to actin.

作者信息

Chen Y D, Chalovich J M

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892.

出版信息

Biophys J. 1992 Oct;63(4):1063-70. doi: 10.1016/S0006-3495(92)81687-9.

Abstract

Binding of caldesmon to actin causes a decrease in the quantity of bound myosin and results in a reduction in the rate of actin-activated adenosine triphosphate hydrolysis. It is generally assumed that the binding of caldesmon and myosin to actin is a pure competitive interaction. However, recent binding studies of enzyme digested caldesmon subfragments directed at mapping the actin binding site of caldesmon have shown that a small 8-kD fragment around the COOH-terminal can compete directly with the myosin subfragment 1 (S-1) binding to actin; at least one other fragment that binds to actin does not inhibit the actin-activated adenosine triphosphate activity of myosin. That is, only a part of the caldesmon sequence may be responsible for directly blocking the binding of S-1 to actin. This prompts us to question the actual mode of binding of intact caldesmon and myosin S-1 to actin: whether the entire intact caldesmon molecule is competing with S-1 binding (pure competitive model) or just a small part of it (mosaic multiple-binding model). To answer this question, we measured the amount of myosin S-1 and caldesmon bound per actin monomer as a function of the total concentration of S-1 added to the system at constant concentrations of actin and caldesmon. A formalism for calculating the titration data based on the pure competitive model and a mosaic multiple-binding model was then developed. When compared with theoretical calculations, it is found that the binding of caldesmon and S-1 to actin cannot be pure competitive if no cooperativity exists between S-1 and caldesmon. In contrast, the mosaic multiple-binding model can fit the binding data rather well regardless of the existence of cooperativity between S-1 and caldesmon.

摘要

钙调蛋白与肌动蛋白的结合会导致结合的肌球蛋白数量减少,并使肌动蛋白激活的三磷酸腺苷水解速率降低。一般认为钙调蛋白和肌球蛋白与肌动蛋白的结合是一种纯粹的竞争性相互作用。然而,最近针对绘制钙调蛋白肌动蛋白结合位点的酶消化钙调蛋白亚片段的结合研究表明,COOH末端周围一个小的8-kD片段可以直接与肌球蛋白亚片段1(S-1)竞争结合肌动蛋白;至少另一个与肌动蛋白结合的片段不会抑制肌球蛋白的肌动蛋白激活的三磷酸腺苷活性。也就是说,只有钙调蛋白序列的一部分可能直接负责阻断S-1与肌动蛋白的结合。这促使我们质疑完整的钙调蛋白和肌球蛋白S-1与肌动蛋白结合的实际模式:是整个完整的钙调蛋白分子与S-1结合竞争(纯粹竞争模型)还是只是其中一小部分(镶嵌多重结合模型)。为了回答这个问题,我们在肌动蛋白和钙调蛋白浓度恒定的情况下,测量了每个肌动蛋白单体结合的肌球蛋白S-1和钙调蛋白的量,作为添加到系统中的S-1总浓度的函数。然后基于纯粹竞争模型和镶嵌多重结合模型开发了一种计算滴定数据的形式体系。与理论计算相比,发现如果S-1和钙调蛋白之间不存在协同性,钙调蛋白和S-1与肌动蛋白的结合就不可能是纯粹竞争的。相反,无论S-1和钙调蛋白之间是否存在协同性,镶嵌多重结合模型都能很好地拟合结合数据。

相似文献

1
A mosaic multiple-binding model for the binding of caldesmon and myosin subfragment-1 to actin.
Biophys J. 1992 Oct;63(4):1063-70. doi: 10.1016/S0006-3495(92)81687-9.
2
Caldesmon-actin-tropomyosin contains two types of binding sites for myosin S1.
Biochemistry. 1998 May 19;37(20):7526-31. doi: 10.1021/bi9729256.
3
Characterization of a caldesmon fragment that competes with myosin-ATP binding to actin.
Biophys J. 1993 Aug;65(2):892-8. doi: 10.1016/S0006-3495(93)81113-5.
7
C-terminal actin-binding sites of smooth muscle caldesmon switch actin between conformational states.
Int J Biochem Cell Biol. 2001 Dec;33(12):1151-9. doi: 10.1016/s1357-2725(01)00091-7.

引用本文的文献

1
Caldesmon and the regulation of cytoskeletal functions.
Adv Exp Med Biol. 2008;644:250-72. doi: 10.1007/978-0-387-85766-4_19.
2
Fesselin binds to actin and myosin and inhibits actin-activated ATPase activity.
J Muscle Res Cell Motil. 2005;26(4-5):183-9. doi: 10.1007/s10974-005-9009-6. Epub 2005 Sep 23.
3
Troponin-tropomyosin: an allosteric switch or a steric blocker?
Biophys J. 2002 Aug;83(2):1039-49. doi: 10.1016/S0006-3495(02)75229-6.
4
Calponin interaction with alpha-actinin-actin: evidence for a structural role for calponin.
Biophys J. 1999 Dec;77(6):3208-17. doi: 10.1016/S0006-3495(99)77151-1.
5
Inhibition of cross-bridge binding to actin by caldesmon fragments in skinned skeletal muscle fibers.
Biophys J. 1997 Mar;72(3):1287-94. doi: 10.1016/S0006-3495(97)78775-7.
6
Characterization of a caldesmon fragment that competes with myosin-ATP binding to actin.
Biophys J. 1993 Aug;65(2):892-8. doi: 10.1016/S0006-3495(93)81113-5.
7
Kinetics of binding of caldesmon to actin.
J Biol Chem. 1995 Apr 28;270(17):9911-6. doi: 10.1074/jbc.270.17.9911.

本文引用的文献

1
A model for the myosin molecule.
Biochim Biophys Acta. 1960 Jul 15;41:401-21. doi: 10.1016/0006-3002(60)90037-8.
2
Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin.
Proc Natl Acad Sci U S A. 1981 Sep;78(9):5652-5. doi: 10.1073/pnas.78.9.5652.
3
Crosslinked myosin subfragment 1: a stable analogue of the subfragment-1.ATP complex.
Proc Natl Acad Sci U S A. 1983 Aug;80(16):4909-13. doi: 10.1073/pnas.80.16.4909.
8
Control of muscle contraction.
Q Rev Biophys. 1969 Nov;2(4):351-84. doi: 10.1017/s0033583500001190.
10
Caldesmon150 regulates the tropomyosin-enhanced actin-myosin interaction in gizzard smooth muscle.
Biochem Biophys Res Commun. 1985 Oct 30;132(2):645-51. doi: 10.1016/0006-291x(85)91181-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验