Suppr超能文献

The effects of stem I and loop A on the processing of 5 S rRNA from Drosophila melanogaster.

作者信息

Levinger L, Vasisht V, Greene V, Arjun I

机构信息

Natural Sciences Department/Biology Discipline, York College, City University of New York, Jamaica 11451.

出版信息

J Biol Chem. 1992 Nov 25;267(33):23683-7.

PMID:1429708
Abstract

The 135-nucleotide Drosophila melanogaster 5 S RNA precursor is processed by removal of 15 nucleotides from its 3' end before incorporation into the large ribosomal subunit. Mature 5 S RNA consists of five helical stem-loops; stem IV and part of V are dispensable, whereas stem III and the 1/118 G-C base pair closest to the processing site at nucleotide 120 are required for processing (Preiser, P., and Levinger, L. (1991) J. Biol. Chem. 266, 7509-7516; Preiser, P., and Levinger, L. (1991) J. Biol. Chem. 266, 23602-23605). We have investigated the effects of stem I and loop A transversions, transitions, selected additions and deletions on 5 S RNA processing. Stem I single substitutions generally prevent processing, whereas compensatory double substitutions restore a range of processing rates. Proximal to the processing site, stem I double substitutions inhibit processing. In the distal portion of stem I and loop A, the processing effect of paired sequence changes varies widely in an irregular pattern. The 7/112 GU pair and nucleotide 13A least tolerate sequence changes; several mutations clustered close to the stem I-loop A boundary stimulate processing. We interpret these results in terms of the RNA helix path and possible RNA-protein contacts.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验