Suppr超能文献

非洲爪蟾5S rRNA的“铰链”核苷酸在RNA结构组织及转录因子TFIIIA结合中的作用

Involvement of "hinge" nucleotides of Xenopus laevis 5 S rRNA in the RNA structural organization and in the binding of transcription factor TFIIIA.

作者信息

Baudin F, Romaniuk P J, Romby P, Brunel C, Westhof E, Ehresmann B, Ehresmann C

机构信息

University of Victoria, Department of Biochemistry and Microbiology, Victoria, Canada.

出版信息

J Mol Biol. 1991 Mar 5;218(1):69-81. doi: 10.1016/0022-2836(91)90874-6.

Abstract

Nucleotides in the bifurcation region of the 5 S rRNA, the junction of the three helical domains, play a central role in determining the coaxial stacking interactions and tertiary structure of the RNA. We have used site-directed mutagenesis of Xenopus laevis oocyte 5 S rRNA to make all possible nucleotide substitutions at three positions in loop A (10, 11 and 13) and at the G66.U109 base-pair at the beginning of helix V. Certain double point mutations were constructed to ascertain the relationship between loop A nucleotides and the G.U base-pair. The importance of the size of the bifurcation region was tested by the creation of a single nucleotide deletion mutant and two single nucleotide insertion mutants. The effects of these mutations on the structure and function of the 5 S rRNA were determined by solution structure probing of approximately half of the mutants with chemical reagents, and by measuring the relative binding affinity of each mutant for transcription factor TFIIIA. Proposed structural rearrangements in the bifurcation region were tested by using a graphic modeling method combining stereochemical constraints and chemical reactivity data. From this work, several insights were obtained into the general problem of helix stacking and RNA folding at complex bifurcation regions. None of the mutations caused an alteration of the coaxial stacking of helix V on helix II proposed for the wild-type 5 S rRNA. However, the formation of a Watson-Crick pair between nucleotide 13 of loop A and nucleotide 66 at the top of helix V does cause a destabilization of the proximal part of this helix. Also, nucleotide 109 at the top of helix V will preferentially pair with nucleotide 10 of loop A rather than nucleotide 66 when both possibilities are provided, without affecting the stability of helix V, even though the G.U pair is disrupted. The effects of these mutations on TFIIIA binding indicate that the bifurcation region is critical for protein recognition. One important feature of the relationship between 5 S rRNA structure and TFIIIA recognition resulting from this study was the observation that any mutation that constrains the bifurcation loop results in a reduced affinity of the RNA for TFIIIA, unless it is compensated for by an increased flexibility elsewhere.

摘要

5S rRNA分叉区域(三个螺旋结构域的交界处)的核苷酸在决定RNA的同轴堆积相互作用和三级结构中起着核心作用。我们利用非洲爪蟾卵母细胞5S rRNA的定点诱变技术,在环A的三个位置(10、11和13)以及螺旋V起始处的G66.U109碱基对进行了所有可能的核苷酸替换。构建了某些双点突变以确定环A核苷酸与G.U碱基对之间的关系。通过创建一个单核苷酸缺失突变体和两个单核苷酸插入突变体来测试分叉区域大小的重要性。用化学试剂对大约一半的突变体进行溶液结构探测,并测量每个突变体与转录因子TFIIIA的相对结合亲和力,从而确定这些突变对5S rRNA结构和功能的影响。通过使用结合立体化学限制和化学反应性数据的图形建模方法,测试了分叉区域中提出的结构重排。通过这项工作,我们对复杂分叉区域的螺旋堆积和RNA折叠这一普遍问题有了一些见解。没有一个突变导致野生型5S rRNA中提出的螺旋V与螺旋II的同轴堆积发生改变。然而,环A的核苷酸13与螺旋V顶部的核苷酸66之间形成沃森-克里克碱基对确实会导致该螺旋近端部分的不稳定。此外,当两种可能性都存在时,螺旋V顶部的核苷酸109将优先与环A的核苷酸10配对而不是与核苷酸66配对,即使G.U碱基对被破坏,也不会影响螺旋V的稳定性。这些突变对TFIIIA结合的影响表明分叉区域对蛋白质识别至关重要。这项研究得出的5S rRNA结构与TFIIIA识别之间关系的一个重要特征是观察到,任何限制分叉环的突变都会导致RNA对TFIIIA的亲和力降低,除非在其他地方增加灵活性来补偿。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验