Suppr超能文献

线粒体电子传递反应过程中的肌红蛋白氧化

METMYOGLOBIN OXIDATION DURING ELECTRON TRANSPORT REACTIONS IN MITOCHONDRIA.

作者信息

KAPLAN-BRESLER A E

出版信息

J Gen Physiol. 1965 Mar;48(4):685-98. doi: 10.1085/jgp.48.4.685.

Abstract

Studies of the intracellular role of myoglobin were carried out by recording spectrophotometric changes in acid metmyoglobin and oxymyoglobin during electron transport reactions with mitochondria prepared from pigeon heart muscle by the method of Chance and Hagihara. The absorption peak of metmyoglobin at 409 mmicro disappeared when substrate was added to normal or antimycin-inhibited preparations, and was replaced by a new maximum at 423 to 424 mmicro, identified as due to the oxidation to ferrylmyoglobin. Further investigation revealed that the oxidation of metmyoglobin took place with the simultaneous oxidation of reduced flavoprotein. Hydrogen peroxide, formed by the reaction of reduced flavoprotein with oxygen, was considered to be the probable intermediate for the oxidation of metmyoglobin in experiments in which catalase was added as a competitor for the oxidant. When DPNH was added to the reaction mixture, the reductant acted to resynthesize the ferri-derivative by reaction with ferrylmyoglobin. Oxymyoglobin could not be used in place of metmyoglobin in these systems. Under the experimental conditions, oxymyoglobin dissociated when dissolved oxygen was depleted from the medium by enzyme oxidations; the resultant ferromyoglobin underwent oxidation to metmyoglobin.

摘要

通过记录在使用钱斯和萩原方法从鸽心肌制备的线粒体进行电子传递反应过程中酸性高铁肌红蛋白和氧合肌红蛋白的分光光度变化,对肌红蛋白的细胞内作用进行了研究。当向正常或抗霉素抑制的制剂中添加底物时,高铁肌红蛋白在409微米处的吸收峰消失,并被423至424微米处的新峰值所取代,该峰值被确定为由于氧化为高铁肌红蛋白。进一步研究表明,高铁肌红蛋白的氧化与还原黄素蛋白的同时氧化发生。在添加过氧化氢酶作为氧化剂竞争剂的实验中,由还原黄素蛋白与氧气反应形成的过氧化氢被认为是高铁肌红蛋白氧化的可能中间体。当向反应混合物中添加二磷酸吡啶核苷酸(DPNH)时,还原剂通过与高铁肌红蛋白反应来重新合成铁衍生物。在这些系统中,氧合肌红蛋白不能替代高铁肌红蛋白。在实验条件下,当通过酶氧化使培养基中的溶解氧耗尽时,氧合肌红蛋白会解离;产生的亚铁肌红蛋白会氧化为高铁肌红蛋白。

相似文献

1
METMYOGLOBIN OXIDATION DURING ELECTRON TRANSPORT REACTIONS IN MITOCHONDRIA.
J Gen Physiol. 1965 Mar;48(4):685-98. doi: 10.1085/jgp.48.4.685.
3
Kinetics and mechanism of *NO2 reacting with various oxidation states of myoglobin.
J Am Chem Soc. 2004 Dec 8;126(48):15694-701. doi: 10.1021/ja046186+.
4
Antioxidant effect of coenzyme Q on hydrogen peroxide-activated myoglobin.
Clin Investig. 1993;71(8 Suppl):S92-6. doi: 10.1007/BF00226847.
5
Conversion of metmyoglobin to NO myoglobin in the presence of nitrite and reductants.
Biochim Biophys Acta. 1996 Apr 17;1289(3):329-35. doi: 10.1016/0304-4165(95)00161-1.
6
Reverse electron transport effects on NADH formation and metmyoglobin reduction.
Meat Sci. 2015 Jul;105:89-92. doi: 10.1016/j.meatsci.2015.02.012. Epub 2015 Mar 3.
8
Oxidation of adrenaline by ferrylmyoglobin.
Free Radic Biol Med. 1998 Jul 15;25(2):175-83. doi: 10.1016/s0891-5849(98)00027-6.
9
Reduction of sperm whale ferrylmyoglobin by endogenous reducing agents: potential reducible loci of ferrylmyoglobin.
Free Radic Biol Med. 1992 Oct;13(4):449-54. doi: 10.1016/0891-5849(92)90185-j.
10
The interaction of Trolox C, a water-soluble vitamin E analog, with ferrylmyoglobin: reduction of the oxoferryl moiety.
Arch Biochem Biophys. 1992 Dec;299(2):302-12. doi: 10.1016/0003-9861(92)90279-6.

本文引用的文献

3
Biochemical differences between red and white muscle.
Nature. 1952 Jul 19;170(4316):122-3. doi: 10.1038/170122a0.
4
The mechanism of the cyanide inhibition of fermentation.
Arch Biochem Biophys. 1952 Jun;37(2):375-92. doi: 10.1016/0003-9861(52)90199-9.
5
Reaction of methaemoglobin with hydrogen peroxide.
Nature. 1950 Sep 23;166(4221):513-4. doi: 10.1038/166513a0.
6
STRUCTURE AND FUNCTION OF IRON-FLAVOPROTEINS.
Fed Proc. 1964 Jan-Feb;23:30-8.
7
ROLE OF SEMIQUINONES IN FLAVOPROTEIN CATALYSIS.
Fed Proc. 1964 Jan-Feb;23:18-29.
9
The mechanism of metmyoglobin oxidation.
J Biol Chem. 1963 Apr;238:1520-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验