Suppr超能文献

大脑中的转氨基作用与谷氨酸代谢

EXCHANGE TRANSAMINATION AND THE METABOLISM OF GLUTAMATE IN BRAIN.

作者信息

BALAZS R, HASLAM J

出版信息

Biochem J. 1965 Jan;94(1):131-41. doi: 10.1042/bj0940131.

Abstract
  1. Experiments were performed to throw light on why the incorporation of (14)C from labelled carbohydrate precursors into glutamate has been found to be more marked in brain than in other tissues. 2. Rapid isotope exchange between labelled glutamate and unlabelled alpha-oxoglutarate was demonstrated in brain and liver mitochondrial preparations. In the presence but not in the absence of alpha-oxoglutarate the yield of (14)CO(2) from [1-(14)C]glutamate exceeded the net glutamate removal, and the final relative specific activities of the two substrates indicated that complete isotopic equilibration had occurred. Also, when in a brain preparation net glutamate removal was inhibited by malonate, isotope exchange between [1-(14)C]glutamate and alpha-oxoglutarate and the formation of (14)CO(2) were unaffected. 3. The time-course of isotope exchange between labelled glutamate and unlabelled alpha-oxoglutarate was followed in uncoupled brain and liver mitochondrial fractions, and the rate of exchange calculated by a computer was found to be 3-8 times more rapid than the maximal rate of utilization of the two substrates. 4. The physiological situation was imitated by the continuous infusion of small amounts of alpha-oxo[1-(14)C]glutarate into brain homogenate containing added glutamate. The fraction of (14)C infused that was retained in the glutamate pool depended on the size of the latter, and the final relative specific activities of the two substrates indicated almost complete isotope exchange. Isotopic equilibration also occurred when alpha-oxoglutarate was generated from pyruvate through the tricarboxylic acid cycle in a brain mitochondrial preparation containing [1-(14)C]glutamate. 5. The differences in the incorporation of (14)C from labelled glucose into the glutamate of brain and liver are discussed in terms of the rates of isotope exchange, the glutamate pool sizes and the rates of formation of labelled alpha-oxoglutarate in the two tissues. It is concluded that the differences between tissues in the incorporation of glucose carbon into glutamate reflect features of their metabolism largely unrelated to that of glutamate.
摘要
  1. 开展了一些实验,以阐明为何已发现从标记的碳水化合物前体中将(14)C掺入谷氨酸盐的现象在脑中比在其他组织中更为显著。2. 在脑和肝线粒体制剂中证实了标记的谷氨酸盐与未标记的α-氧代戊二酸之间的快速同位素交换。在存在α-氧代戊二酸但不存在α-氧代戊二酸的情况下,[1-(14)C]谷氨酸盐产生的(14)CO2产量超过了谷氨酸盐的净去除量,并且两种底物的最终相对比活性表明发生了完全的同位素平衡。此外,当在脑制剂中丙二酸抑制谷氨酸盐的净去除时,[1-(14)C]谷氨酸盐与α-氧代戊二酸之间的同位素交换以及(14)CO2的形成不受影响。3. 在解偶联的脑和肝线粒体组分中追踪标记的谷氨酸盐与未标记的α-氧代戊二酸之间的同位素交换时间进程,通过计算机计算得出的交换速率比两种底物的最大利用速率快3至8倍。4. 通过向含有添加的谷氨酸盐的脑匀浆中持续输注少量α-氧代[1-(14)C]戊二酸来模拟生理情况。输注的(14)C中保留在谷氨酸盐池中的部分取决于后者的大小,并且两种底物的最终相对比活性表明几乎发生了完全的同位素交换。当在含有[1-(14)C]谷氨酸盐的脑线粒体制剂中通过三羧酸循环由丙酮酸生成α-氧代戊二酸时,也发生了同位素平衡。5. 根据同位素交换速率、谷氨酸盐池大小以及两种组织中标记的α-氧代戊二酸的形成速率,讨论了从标记的葡萄糖中将(14)C掺入脑和肝谷氨酸盐中的差异。得出的结论是,组织在将葡萄糖碳掺入谷氨酸盐方面的差异反映了它们代谢的特征,这些特征在很大程度上与谷氨酸盐的代谢无关。

相似文献

1
EXCHANGE TRANSAMINATION AND THE METABOLISM OF GLUTAMATE IN BRAIN.
Biochem J. 1965 Jan;94(1):131-41. doi: 10.1042/bj0940131.
2
CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
Biochem J. 1965 May;95(2):497-508. doi: 10.1042/bj0950497.
3
THE OXIDATION OF GLUTAMATE BY RAT-LIVER MITOCHONDRIA.
Biochem J. 1965 Jun;95(3):742-8. doi: 10.1042/bj0950742.
6
THE OXIDATION OF GLUTAMATE AND ALANINE BY LIVER MITOCHONDRIA.
Biochim Biophys Acta. 1964 Jun 1;85:353-9. doi: 10.1016/0926-6569(64)90299-8.
9
THE METABOLISM OF GLUTAMATE IN HOMOGENATES AND SLICES OF BRAIN CORTEX.
Biochem J. 1963 Sep;88(3):566-78. doi: 10.1042/bj0880566.
10
NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain.
J Cereb Blood Flow Metab. 1992 May;12(3):434-47. doi: 10.1038/jcbfm.1992.61.

引用本文的文献

2
Fine Astrocyte Processes Contain Very Small Mitochondria: Glial Oxidative Capability May Fuel Transmitter Metabolism.
Neurochem Res. 2015 Dec;40(12):2402-13. doi: 10.1007/s11064-015-1563-8. Epub 2015 Apr 18.
3
Is there in vivo evidence for amino acid shuttles carrying ammonia from neurons to astrocytes?
Neurochem Res. 2012 Nov;37(11):2597-612. doi: 10.1007/s11064-012-0898-7. Epub 2012 Oct 27.
4
Appendix-Calculation of rate of exchange transamination.
Biochem J. 1965 Jan;94(1):142. doi: 10.1042/bj0940142.
8
Selective inhibition of glucose oxidation by triethyltin in rat brain in vivo.
Biochem J. 1970 Aug;119(1):95-102. doi: 10.1042/bj1190095.

本文引用的文献

1
Appendix-Calculation of rate of exchange transamination.
Biochem J. 1965 Jan;94(1):142. doi: 10.1042/bj0940142.
4
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
5
The interconversion of glutamic acid and aspartic acid in respiring tissues.
Biochem J. 1960 Jun;75(3):523-9. doi: 10.1042/bj0750523.
6
Carbohydrate--amino-acid inter-relations in brain cortex in vitro.
Nature. 1959 Jul 25;184:252-6. doi: 10.1038/184252a0.
7
AMINO ACID METABOLISM IN RAT BRAIN STUDIED WITH 14C-LABELLED GLUCOSE.
J Neurochem. 1964 Mar;11:165-85. doi: 10.1111/j.1471-4159.1964.tb06127.x.
8
THE UTILIZATION OF GLUCOSE IN THE BRAIN AND OTHER ORGANS OF THE CAT.
Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:124-36. doi: 10.1098/rspb.1964.0031.
9
SOME PROPERTIES OF RAT BRAIN MITOCHONDRIAL PREPARATIONS: RESPIRATORY CONTROL.
J Neurochem. 1963 Oct;10:685-708. doi: 10.1111/j.1471-4159.1963.tb08926.x.
10
INTERRELATIONSHIPS OF GLUCOSE AND GLUTAMIC ACID METABOLISM IN DEVELOPING RABBIT BRAIN.
J Neurochem. 1963 Sep;10:635-9. doi: 10.1111/j.1471-4159.1963.tb08935.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验