Brooks S P, Storey K B
Department of Biology, Carleton University, Ottawa, Ontario, Canada.
Mol Cell Biochem. 1992 Sep 22;115(1):43-8. doi: 10.1007/BF00229094.
Equations are presented which describe a linear coupled system of reactions that utilize a single substrate and convert it to product by way of several intermediate enzyme catalysed steps. The present analysis extends previous results by assuming that the enzymes obey reversible Michaelis-Menten kinetics. In order for the system to reach steady state one must assume that the initial substrate concentration and the final product concentration are buffered to a constant value. Using the present analysis it can be shown that the system will not enter a steady state if the maximal velocity of any forward reaction is less than the steady state flux through the system. This condition represents a practical test for determining if a system will enter steady state but is valid only when the rate of the primary enzyme is not affected allosterically be intermediates in the pathway. The equations are used to analyse a portion of the rat liver glycogenic pathway that catalyses the conversion of glucose to fructose 1,6-bisphosphate.
文中给出了一些方程式,这些方程式描述了一个线性耦合反应系统,该系统利用单一底物,并通过几个中间酶催化步骤将其转化为产物。目前的分析通过假设酶服从可逆的米氏动力学,扩展了先前的结果。为了使系统达到稳态,必须假设初始底物浓度和最终产物浓度被缓冲到一个恒定值。使用目前的分析可以表明,如果任何正向反应的最大速度小于通过该系统的稳态通量,系统将不会进入稳态。这个条件是确定一个系统是否会进入稳态的实际测试,但仅当初级酶的速率不受途径中中间体的变构影响时才有效。这些方程式用于分析大鼠肝脏糖原生成途径中催化葡萄糖转化为果糖1,6-二磷酸的部分。