Juretić Davor, Bonačić Lošić Željana
Mediterranean Institute for Life Sciences, Šetalište Ivana Meštrovića 45, 21000 Split, Croatia.
Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia.
Entropy (Basel). 2024 Feb 9;26(2):151. doi: 10.3390/e26020151.
Previous studies have revealed the extraordinarily large catalytic efficiency of some enzymes. High catalytic proficiency is an essential accomplishment of biological evolution. Natural selection led to the increased turnover number, k, and enzyme efficiency, k/K, of uni-uni enzymes, which convert a single substrate into a single product. We added or multiplied random noise with chosen rate constants to explore the correlation between dissipation and catalytic efficiency for ten enzymes: beta-galactosidase, glucose isomerase, β-lactamases from three bacterial strains, ketosteroid isomerase, triosephosphate isomerase, and carbonic anhydrase I, II, and T200H. Our results highlight the role of biological evolution in accelerating thermodynamic evolution. The catalytic performance of these enzymes is proportional to overall entropy production-the main parameter from irreversible thermodynamics. That parameter is also proportional to the evolutionary distance of β-lactamases PC1, RTEM, and Lac-1 when natural or artificial evolution produces the optimal or maximal possible catalytic efficiency. De novo enzyme design and attempts to speed up the rate-limiting catalytic steps may profit from the described connection between kinetics and thermodynamics.
先前的研究揭示了一些酶具有极高的催化效率。高催化能力是生物进化的一项重要成果。自然选择导致单底物单产物的单分子酶的周转数k和酶效率k/K增加。我们通过给选定的速率常数添加或乘以随机噪声,来探究十种酶(β-半乳糖苷酶、葡萄糖异构酶、来自三种细菌菌株的β-内酰胺酶、酮甾体异构酶、磷酸丙糖异构酶以及碳酸酐酶I、II和T200H)的耗散与催化效率之间的相关性。我们的结果突出了生物进化在加速热力学进化中的作用。这些酶的催化性能与总熵产生成正比,总熵产生是不可逆热力学的主要参数。当自然或人工进化产生最佳或最大可能的催化效率时,该参数也与β-内酰胺酶PC1、RTEM和Lac-1的进化距离成正比。从头开始的酶设计以及加速限速催化步骤的尝试可能会从所描述的动力学与热力学之间的联系中受益。