Suppr超能文献

基于前庭眼反射的循环网络模型中的运动学习。

Motor learning in a recurrent network model based on the vestibulo-ocular reflex.

作者信息

Lisberger S G, Sejnowski T J

机构信息

Department of Physiology, W.M. Keck Foundation Center for Integrative Neuroscience, San Francisco, California.

出版信息

Nature. 1992 Nov 12;360(6400):159-61. doi: 10.1038/360159a0.

Abstract

Most models of neural networks have assumed that neurons process information on a timescale of milliseconds and that the long-term modification of synaptic strengths underlies learning and memory. But neurons also have cellular mechanisms that operate on a timescale of tens or hundreds of milliseconds, such as a gradual rise in firing rate in response to injection of constant current or a rapid rise followed by a slower adaptation. These dynamic properties of neuronal responses are mediated by ion channels that are subject to modulation. We demonstrate here how a neural network with recurrent feedback connections can convert long-term modulation of neural responses that occur over these intermediate timescales into changes in the amplitude of the steady output from the system. This general principle may be relevant to many feedback systems in the brain. Here it is applied to the vestibulo-ocular reflex, whose amplitude is subject to long-term adaptive modification by visual inputs. The model reconciles apparently contradictory data on the neural locus of the cellular mechanisms that mediate this simple form of learning and memory.

摘要

大多数神经网络模型都假定神经元在毫秒级的时间尺度上处理信息,并且突触强度的长期改变是学习和记忆的基础。但神经元也具有在数十或数百毫秒时间尺度上起作用的细胞机制,例如响应恒定电流注入时放电率的逐渐上升,或快速上升后接着较慢的适应性变化。神经元反应的这些动态特性由受调制的离子通道介导。我们在此展示了一个具有循环反馈连接的神经网络如何将在这些中间时间尺度上发生的神经反应的长期调制转化为系统稳定输出幅度的变化。这一普遍原理可能与大脑中的许多反馈系统相关。在此它被应用于前庭眼反射,其幅度会受到视觉输入的长期适应性改变。该模型调和了关于介导这种简单学习和记忆形式的细胞机制的神经位点上明显相互矛盾的数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验