Suppr超能文献

Qy-excitation resonance Raman scattering from the special pair in Rhodobacter sphaeroides reaction centers. Implications for primary charge separation.

作者信息

Palaniappan V, Aldema M A, Frank H A, Bocian D F

机构信息

Department of Chemistry, University of California, Riverside 92521.

出版信息

Biochemistry. 1992 Nov 17;31(45):11050-8. doi: 10.1021/bi00160a014.

Abstract

Qy-excitation resonance Raman (RR) spectra are reported for reaction centers (RCs) from Rhodobacter sphaeroides 2.4.1. The RR spectra were acquired for both chemically reduced and oxidized RCs at 25 and 201 K by using a variety of excitation wavelengths in the range 800-920 nm. This range spans the Qy absorption bands of the special pair (P) and the accessory bacteriochlorophylls (BChls). The RR studies indicate that both P and the accessory BChls exhibit rich RR spectra in the 30-1800-cm-1 region. For both types of pigments, at least 20 bands are observed in the 30-750-cm-1 range. Although the frequencies of the modes of P and the accessory BChls are different, it is possible to make one-to-one correlations of the bands observed for the two types of pigments. This result suggests that the vibronically active low-frequency modes of P are derived from monomer-like vibrations (although they may be coupled monomer-like modes) rather than being vibrations resulting from the additional degrees of freedom present in the dimer. A plausible set of vibrational assignments for the low-frequency modes of both P and the accessory BChls is proposed on the basis of a semiempirical normal coordinate calculation. Comparison of the RR intensities of the low-frequency modes of P with those of the analogous modes of the accessory BChls indicates that the intensities of the modes of the former pigments are considerably larger than those of the latter. Collectively, the spectral data indicate that a large number of low-frequency modes of P are strongly coupled to the Qy electronic transition.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验