Suppr超能文献

新皮质定位相关癫痫中的棘波簇分析在脑磁图(MEG)中产生具有临床意义的等效源定位结果。

Spike cluster analysis in neocortical localization related epilepsy yields clinically significant equivalent source localization results in magnetoencephalogram (MEG).

作者信息

Van 't Ent D, Manshanden I, Ossenblok P, Velis D N, de Munck J C, Verbunt J P A, Lopes da Silva F H

机构信息

MEG Centre, Vrije Universiteit medical centre (VUmc) Amsterdam, Out-Patient Clinic Reception C, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.

出版信息

Clin Neurophysiol. 2003 Oct;114(10):1948-62. doi: 10.1016/s1388-2457(03)00156-1.

Abstract

OBJECTIVE

In magnetoencephalogram (MEG) recordings of patients with epilepsy several types of sharp transients with different spatiotemporal distributions are commonly present. Our objective was to develop a computer based method to identify and classify groups of epileptiform spikes, as well as other transients, in order to improve the characterization of irritative areas in the brain of epileptic patients.

METHODS

MEG data centered on selected spikes were stored in signal matrices of C channels by T time samples. The matrices were normalized and euclidean distances between spike representations in vector space R(CxT) were input to a Ward's hierarchical clustering algorithm.

RESULTS

The method was applied to MEG data from 4 patients with localization-related epilepsy. For each patient, distinct spike subpopulations were found with clearly different topographical field maps. Inverse computations to selected spike subaverages yielded source solutions in agreement with seizure classification and location of structural lesions, if present, on magnetic resonance images.

CONCLUSIONS

With the proposed method a reliable categorization of epileptiform spikes is obtained, that can be applied in an automatic way. Computation of subaverages of similar spikes enhances the signal-to-noise ratio of spike field maps and allows for more accurate reconstruction of sources generating the epileptiform discharges.

摘要

目的

在癫痫患者的脑磁图(MEG)记录中,通常会出现几种具有不同时空分布的尖锐瞬态信号。我们的目标是开发一种基于计算机的方法,用于识别和分类癫痫样棘波群以及其他瞬态信号,以改善对癫痫患者脑内刺激性区域的特征描述。

方法

以选定棘波为中心的MEG数据按T个时间样本存储在C通道的信号矩阵中。对这些矩阵进行归一化处理,并将向量空间R(CxT)中棘波表示之间的欧几里得距离输入到沃德层次聚类算法中。

结果

该方法应用于4例定位相关癫痫患者的MEG数据。对于每位患者,均发现了具有明显不同地形图的独特棘波亚群。对选定棘波亚平均值进行的逆计算得出的源解与癫痫发作分类以及磁共振图像上(若存在)结构病变的位置相符。

结论

通过所提出的方法可获得癫痫样棘波的可靠分类,且该分类可自动应用。对相似棘波的亚平均值进行计算可提高棘波场图的信噪比,并能更准确地重建产生癫痫样放电的源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验