Shahidullah Mohammad, Harris Thanawath, Germann Markus W, Covarrubias Manuel
Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College of Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA.
Biochemistry. 2003 Sep 30;42(38):11243-52. doi: 10.1021/bi034738f.
Aliphatic alcohols (1-alkanols) selectively inhibit the neuronal Shaw2 K(+) channel at an internal binding site. This inhibition is conferred by a sequence of 13 residues that constitutes the S4-S5 loop in the pore-forming subunit. Here, we combined functional and structural approaches to gain insights into the molecular basis of this interaction. To infer the forces that are involved, we employed a fast concentration-clamp method (10-90% exchange time = 800 micros) to examine the kinetics of the interaction of three members of the homologous series of 1-alkanols (ethanol, 1-butanol, and 1-hexanol) with Shaw2 K(+) channels in Xenopus oocyte inside-out patches. As expected for a second-order mechanism involving a receptor site, only the observed association rate constants were linearly dependent on the 1-alkanol concentration. While the alkyl chain length modestly influenced the dissociation rate constants (decreasing only approximately 2-fold between ethanol and 1-hexanol), the second-order association rate constants increased e-fold per carbon atom. Thus, hydrophobic interactions govern the probability of productive collisions at the 1-alkanol binding site, and short-range polar interactions help to stabilize the complex. We also examined the relationship between the energetics of 1-alkanol binding and the structural properties of the S4-S5 loop. Circular dichroism spectroscopy applied to peptides corresponding to the S4-S5 loop of various K(+) channels revealed a correlation between the apparent binding affinity of the 1-alkanol binding site and the alpha-helical propensity of the S4-S5 loop. The data suggest that amphiphilic interactions at the Shaw2 1-alkanol binding site depend on specific structural constraints in the pore-forming subunit of the channel.
脂肪醇(1-链烷醇)在内部结合位点选择性抑制神经元Shaw2钾通道。这种抑制作用由构成孔形成亚基中S4-S5环的13个残基序列赋予。在这里,我们结合功能和结构方法来深入了解这种相互作用的分子基础。为了推断其中涉及的作用力,我们采用快速浓度钳制方法(10-90%交换时间 = 800微秒)来研究1-链烷醇同系物的三个成员(乙醇、1-丁醇和1-己醇)与非洲爪蟾卵母细胞内翻膜片中的Shaw2钾通道相互作用的动力学。正如涉及受体位点的二级机制所预期的那样,只有观察到的缔合速率常数与1-链烷醇浓度呈线性相关。虽然烷基链长度对解离速率常数有适度影响(乙醇和1-己醇之间仅下降约2倍),但二级缔合速率常数每增加一个碳原子就增加e倍。因此,疏水相互作用决定了在1-链烷醇结合位点发生有效碰撞的概率,而短程极性相互作用有助于稳定复合物。我们还研究了1-链烷醇结合能与S4-S5环结构特性之间 的关系。应用于各种钾通道S4-S5环对应肽段的圆二色光谱揭示了1-链烷醇结合位点的表观结合亲和力与S4-S5环的α-螺旋倾向之间的相关性。数据表明,Shaw2 1-链烷醇结合位点的两亲相互作用取决于通道孔形成亚基中的特定结构限制。