Covarrubias M, Vyas T B, Escobar L, Wei A
Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.
J Biol Chem. 1995 Aug 18;270(33):19408-16. doi: 10.1074/jbc.270.33.19408.
The molecular basis of general anesthetic action on membrane proteins that control ion transport is not yet understood. In a previous report (Covarrubias, M., and Rubin, E. (1993) Proc. Natl. Acad. Sci. 90, 6957-6960), we found that low concentrations of ethanol (17-170mM) selectively inhibited a noninactivating cloned K+ channel encoded by Drosophila Shaw2. Here, we have conducted equilibrium dos-inhibition experiments, single channel recording, and mutagenesis in vitro to study the mechanism underlying the inhibition of Shaw2K+ channels by a homologous series of n-alkanols (ethanol to 1-hexanol). The results showed that: (i) these alcohols inhibited Shaw2 whole-cell currents, the equilibrium dose-inhibition relations were hyperbolic, and competition experiments revealed the presence of a discrete site of action, possibly a hydrophobic pocket; (ii) this pocket may be part of the protein because n-alkanol sensitivity can be transferred to novel hybrid K+ channels composed of Shaw2 subunits and homologous ethanol-insensitive subunits: (iii) moreover, a hydrophobic point mutation within a cytoplasmic loop of an ethanol-insensitive K+ channel (human Kv3.4) was sufficient to allow significant inhibition by n-alkanols, with a dose-inhibition relation that closely resembled that of wildtype Shaw2 channels; and (iv) 1-butanol selectively inhibited long duration single channel openings in a manner consistent with a direct effect on channel gating. These results strongly suggest that a discrete site within the ion channel protein is the primary locus of alcohol and general anesthetic action.
全身麻醉药对控制离子转运的膜蛋白作用的分子基础尚不清楚。在之前的一份报告中(科瓦鲁维亚斯,M.,和鲁宾,E.(1993年)《美国国家科学院院刊》90,6957 - 6960),我们发现低浓度乙醇(17 - 170mM)能选择性抑制果蝇Shaw2编码的一种非失活克隆钾通道。在此,我们进行了平衡剂量 - 抑制实验、单通道记录以及体外诱变,以研究一系列正构烷醇(从乙醇到1 - 己醇)对Shaw2钾通道抑制作用的机制。结果表明:(i)这些醇类抑制Shaw2全细胞电流,平衡剂量 - 抑制关系呈双曲线,竞争实验揭示存在一个离散的作用位点,可能是一个疏水口袋;(ii)这个口袋可能是蛋白质的一部分,因为正构烷醇敏感性可以转移到由Shaw2亚基和同源的对乙醇不敏感的亚基组成的新型杂交钾通道;(iii)此外,对乙醇不敏感的钾通道(人Kv3.4)胞质环内的一个疏水点突变足以使正构烷醇产生显著抑制作用,其剂量 - 抑制关系与野生型Shaw2通道非常相似;(iv)1 - 丁醇以与直接影响通道门控一致的方式选择性抑制长时间的单通道开放。这些结果强烈表明离子通道蛋白内的一个离散位点是酒精和全身麻醉药作用的主要部位。